| Step |
Hyp |
Ref |
Expression |
| 1 |
|
edglnl.v |
|
| 2 |
|
edglnl.e |
|
| 3 |
|
iunrab |
|
| 4 |
3
|
a1i |
|
| 5 |
4
|
uneq1d |
|
| 6 |
|
unrab |
|
| 7 |
|
simpl |
|
| 8 |
7
|
rexlimivw |
|
| 9 |
8
|
a1i |
|
| 10 |
|
snidg |
|
| 11 |
10
|
ad2antlr |
|
| 12 |
|
eleq2 |
|
| 13 |
11 12
|
syl5ibrcom |
|
| 14 |
9 13
|
jaod |
|
| 15 |
|
upgruhgr |
|
| 16 |
2
|
uhgrfun |
|
| 17 |
15 16
|
syl |
|
| 18 |
17
|
adantr |
|
| 19 |
2
|
iedgedg |
|
| 20 |
18 19
|
sylan |
|
| 21 |
|
eqid |
|
| 22 |
1 21
|
upgredg |
|
| 23 |
22
|
ex |
|
| 24 |
23
|
ad2antrr |
|
| 25 |
|
dfsn2 |
|
| 26 |
25
|
eqcomi |
|
| 27 |
|
elsni |
|
| 28 |
|
sneq |
|
| 29 |
28
|
eqcomd |
|
| 30 |
27 29
|
syl |
|
| 31 |
26 30
|
eqtrid |
|
| 32 |
31 26
|
eleq2s |
|
| 33 |
|
preq2 |
|
| 34 |
33
|
eleq2d |
|
| 35 |
33
|
eqeq1d |
|
| 36 |
34 35
|
imbi12d |
|
| 37 |
32 36
|
mpbiri |
|
| 38 |
37
|
imp |
|
| 39 |
38
|
olcd |
|
| 40 |
39
|
expcom |
|
| 41 |
40
|
3ad2ant3 |
|
| 42 |
41
|
com12 |
|
| 43 |
|
simpr3 |
|
| 44 |
|
simpl |
|
| 45 |
44
|
necomd |
|
| 46 |
|
simpr2 |
|
| 47 |
|
prproe |
|
| 48 |
43 45 46 47
|
syl3anc |
|
| 49 |
|
r19.42v |
|
| 50 |
43 48 49
|
sylanbrc |
|
| 51 |
50
|
orcd |
|
| 52 |
51
|
ex |
|
| 53 |
42 52
|
pm2.61ine |
|
| 54 |
53
|
3exp |
|
| 55 |
54
|
ad2antlr |
|
| 56 |
55
|
imp |
|
| 57 |
|
eleq2 |
|
| 58 |
|
eleq2 |
|
| 59 |
57 58
|
anbi12d |
|
| 60 |
59
|
rexbidv |
|
| 61 |
|
eqeq1 |
|
| 62 |
60 61
|
orbi12d |
|
| 63 |
57 62
|
imbi12d |
|
| 64 |
56 63
|
syl5ibrcom |
|
| 65 |
64
|
rexlimdvva |
|
| 66 |
24 65
|
syld |
|
| 67 |
20 66
|
mpd |
|
| 68 |
14 67
|
impbid |
|
| 69 |
68
|
rabbidva |
|
| 70 |
6 69
|
eqtrid |
|
| 71 |
5 70
|
eqtrd |
|