Metamath Proof Explorer


Theorem iedgedg

Description: An indexed edge is an edge. (Contributed by AV, 19-Dec-2021)

Ref Expression
Hypothesis iedgedg.e E=iEdgG
Assertion iedgedg FunEIdomEEIEdgG

Proof

Step Hyp Ref Expression
1 iedgedg.e E=iEdgG
2 fvelrn FunEIdomEEIranE
3 edgval EdgG=raniEdgG
4 1 rneqi ranE=raniEdgG
5 3 4 eqtr4i EdgG=ranE
6 2 5 eleqtrrdi FunEIdomEEIEdgG