| Step |
Hyp |
Ref |
Expression |
| 1 |
|
edglnl.v |
|
| 2 |
|
edglnl.e |
|
| 3 |
|
diffi |
|
| 4 |
3
|
adantr |
|
| 5 |
4
|
3ad2ant2 |
|
| 6 |
|
dmfi |
|
| 7 |
|
rabfi |
|
| 8 |
6 7
|
syl |
|
| 9 |
8
|
adantl |
|
| 10 |
9
|
3ad2ant2 |
|
| 11 |
10
|
adantr |
|
| 12 |
|
notnotb |
|
| 13 |
|
notnotb |
|
| 14 |
|
upgruhgr |
|
| 15 |
2
|
uhgrfun |
|
| 16 |
14 15
|
syl |
|
| 17 |
2
|
iedgedg |
|
| 18 |
16 17
|
sylan |
|
| 19 |
|
eqid |
|
| 20 |
1 19
|
upgredg |
|
| 21 |
18 20
|
syldan |
|
| 22 |
21
|
ex |
|
| 23 |
22
|
3ad2ant1 |
|
| 24 |
23
|
adantr |
|
| 25 |
24
|
adantr |
|
| 26 |
25
|
imp |
|
| 27 |
|
eldifsni |
|
| 28 |
|
eldifsni |
|
| 29 |
|
3elpr2eq |
|
| 30 |
29
|
expcom |
|
| 31 |
30
|
3expd |
|
| 32 |
31
|
com23 |
|
| 33 |
32
|
3imp |
|
| 34 |
33
|
con3d |
|
| 35 |
34
|
3exp |
|
| 36 |
35
|
com24 |
|
| 37 |
36
|
imp |
|
| 38 |
|
eleq2 |
|
| 39 |
|
eleq2 |
|
| 40 |
|
eleq2 |
|
| 41 |
40
|
notbid |
|
| 42 |
39 41
|
imbi12d |
|
| 43 |
38 42
|
imbi12d |
|
| 44 |
37 43
|
syl5ibrcom |
|
| 45 |
44
|
adantr |
|
| 46 |
45
|
rexlimdvva |
|
| 47 |
46
|
ex |
|
| 48 |
27 28 47
|
syl2an |
|
| 49 |
48
|
adantl |
|
| 50 |
49
|
imp |
|
| 51 |
50
|
adantr |
|
| 52 |
26 51
|
mpd |
|
| 53 |
52
|
imp |
|
| 54 |
13 53
|
biimtrrid |
|
| 55 |
54
|
orrd |
|
| 56 |
55
|
ex |
|
| 57 |
12 56
|
biimtrrid |
|
| 58 |
57
|
orrd |
|
| 59 |
|
anandi |
|
| 60 |
59
|
bicomi |
|
| 61 |
60
|
notbii |
|
| 62 |
|
ianor |
|
| 63 |
|
ianor |
|
| 64 |
63
|
orbi2i |
|
| 65 |
61 62 64
|
3bitri |
|
| 66 |
58 65
|
sylibr |
|
| 67 |
66
|
ralrimiva |
|
| 68 |
|
inrab |
|
| 69 |
68
|
eqeq1i |
|
| 70 |
|
rabeq0 |
|
| 71 |
69 70
|
bitri |
|
| 72 |
67 71
|
sylibr |
|
| 73 |
72
|
ex |
|
| 74 |
73
|
orrd |
|
| 75 |
74
|
ralrimivva |
|
| 76 |
|
eleq1w |
|
| 77 |
76
|
anbi2d |
|
| 78 |
77
|
rabbidv |
|
| 79 |
78
|
disjor |
|
| 80 |
75 79
|
sylibr |
|
| 81 |
5 11 80
|
hashiun |
|
| 82 |
81
|
eqcomd |
|
| 83 |
82
|
oveq1d |
|
| 84 |
11
|
ralrimiva |
|
| 85 |
|
iunfi |
|
| 86 |
5 84 85
|
syl2anc |
|
| 87 |
|
rabfi |
|
| 88 |
6 87
|
syl |
|
| 89 |
88
|
adantl |
|
| 90 |
89
|
3ad2ant2 |
|
| 91 |
|
fveqeq2 |
|
| 92 |
91
|
elrab |
|
| 93 |
|
eldifn |
|
| 94 |
|
eleq2 |
|
| 95 |
94
|
notbid |
|
| 96 |
93 95
|
imbitrrid |
|
| 97 |
96
|
adantl |
|
| 98 |
97
|
adantl |
|
| 99 |
98
|
imp |
|
| 100 |
99
|
intnand |
|
| 101 |
100
|
intnand |
|
| 102 |
101
|
ralrimiva |
|
| 103 |
|
eliun |
|
| 104 |
103
|
notbii |
|
| 105 |
|
ralnex |
|
| 106 |
|
fveq2 |
|
| 107 |
106
|
eleq2d |
|
| 108 |
106
|
eleq2d |
|
| 109 |
107 108
|
anbi12d |
|
| 110 |
109
|
elrab |
|
| 111 |
110
|
notbii |
|
| 112 |
111
|
ralbii |
|
| 113 |
104 105 112
|
3bitr2i |
|
| 114 |
102 113
|
sylibr |
|
| 115 |
114
|
ex |
|
| 116 |
92 115
|
biimtrid |
|
| 117 |
116
|
ralrimiv |
|
| 118 |
|
disjr |
|
| 119 |
117 118
|
sylibr |
|
| 120 |
|
hashun |
|
| 121 |
86 90 119 120
|
syl3anc |
|
| 122 |
1 2
|
edglnl |
|
| 123 |
122
|
3adant2 |
|
| 124 |
123
|
fveq2d |
|
| 125 |
83 121 124
|
3eqtr2d |
|