Metamath Proof Explorer


Theorem uhgrfun

Description: The edge function of an undirected hypergraph is a function. (Contributed by Alexander van der Vekens, 26-Dec-2017) (Revised by AV, 15-Dec-2020)

Ref Expression
Hypothesis uhgrfun.e E=iEdgG
Assertion uhgrfun GUHGraphFunE

Proof

Step Hyp Ref Expression
1 uhgrfun.e E=iEdgG
2 eqid VtxG=VtxG
3 2 1 uhgrf GUHGraphE:domE𝒫VtxG
4 3 ffund GUHGraphFunE