Metamath Proof Explorer


Definition df-uhgr

Description: Define the class of all undirected hypergraphs. An undirected hypergraph consists of a set v (of "vertices") and a function e (representing indexed "edges") into the power set of this set (the empty set excluded). (Contributed by Alexander van der Vekens, 26-Dec-2017) (Revised by AV, 8-Oct-2020)

Ref Expression
Assertion df-uhgr UHGraph=g|[˙Vtxg/v]˙[˙iEdgg/e]˙e:dome𝒫v

Detailed syntax breakdown

Step Hyp Ref Expression
0 cuhgr classUHGraph
1 vg setvarg
2 cvtx classVtx
3 1 cv setvarg
4 3 2 cfv classVtxg
5 vv setvarv
6 ciedg classiEdg
7 3 6 cfv classiEdgg
8 ve setvare
9 8 cv setvare
10 9 cdm classdome
11 5 cv setvarv
12 11 cpw class𝒫v
13 c0 class
14 13 csn class
15 12 14 cdif class𝒫v
16 10 15 9 wf wffe:dome𝒫v
17 16 8 7 wsbc wff[˙iEdgg/e]˙e:dome𝒫v
18 17 5 4 wsbc wff[˙Vtxg/v]˙[˙iEdgg/e]˙e:dome𝒫v
19 18 1 cab classg|[˙Vtxg/v]˙[˙iEdgg/e]˙e:dome𝒫v
20 0 19 wceq wffUHGraph=g|[˙Vtxg/v]˙[˙iEdgg/e]˙e:dome𝒫v