Description: Define the class of all undirected hypergraphs. An undirected hypergraph consists of a set v (of "vertices") and a function e (representing indexed "edges") into the power set of this set (the empty set excluded). (Contributed by Alexander van der Vekens, 26-Dec-2017) (Revised by AV, 8-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | df-uhgr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cuhgr | |
|
1 | vg | |
|
2 | cvtx | |
|
3 | 1 | cv | |
4 | 3 2 | cfv | |
5 | vv | |
|
6 | ciedg | |
|
7 | 3 6 | cfv | |
8 | ve | |
|
9 | 8 | cv | |
10 | 9 | cdm | |
11 | 5 | cv | |
12 | 11 | cpw | |
13 | c0 | |
|
14 | 13 | csn | |
15 | 12 14 | cdif | |
16 | 10 15 9 | wf | |
17 | 16 8 7 | wsbc | |
18 | 17 5 4 | wsbc | |
19 | 18 1 | cab | |
20 | 0 19 | wceq | |