Metamath Proof Explorer


Theorem 3elpr2eq

Description: If there are three elements in a proper unordered pair, and two of them are different from the third one, the two must be equal. (Contributed by AV, 19-Dec-2021)

Ref Expression
Assertion 3elpr2eq XABYABZABYXZXY=Z

Proof

Step Hyp Ref Expression
1 elpri XABX=AX=B
2 elpri YABY=AY=B
3 elpri ZABZ=AZ=B
4 eqtr3 Z=AX=AZ=X
5 eqneqall Z=XZXY=Z
6 4 5 syl Z=AX=AZXY=Z
7 6 adantld Z=AX=AYXZXY=Z
8 7 ex Z=AX=AYXZXY=Z
9 8 a1d Z=AY=AY=BX=AYXZXY=Z
10 eqtr3 Y=AX=AY=X
11 eqneqall Y=XYXZXY=Z
12 10 11 syl Y=AX=AYXZXY=Z
13 12 impd Y=AX=AYXZXY=Z
14 13 ex Y=AX=AYXZXY=Z
15 14 a1d Y=AZ=BX=AYXZXY=Z
16 eqtr3 Y=BZ=BY=Z
17 16 2a1d Y=BZ=BX=AYXZXY=Z
18 17 ex Y=BZ=BX=AYXZXY=Z
19 15 18 jaoi Y=AY=BZ=BX=AYXZXY=Z
20 19 com12 Z=BY=AY=BX=AYXZXY=Z
21 9 20 jaoi Z=AZ=BY=AY=BX=AYXZXY=Z
22 21 com13 X=AY=AY=BZ=AZ=BYXZXY=Z
23 eqtr3 Y=AZ=AY=Z
24 23 2a1d Y=AZ=AX=BYXZXY=Z
25 24 ex Y=AZ=AX=BYXZXY=Z
26 eqtr3 Y=BX=BY=X
27 26 11 syl Y=BX=BYXZXY=Z
28 27 impd Y=BX=BYXZXY=Z
29 28 ex Y=BX=BYXZXY=Z
30 29 a1d Y=BZ=AX=BYXZXY=Z
31 25 30 jaoi Y=AY=BZ=AX=BYXZXY=Z
32 31 com12 Z=AY=AY=BX=BYXZXY=Z
33 eqtr3 Z=BX=BZ=X
34 33 5 syl Z=BX=BZXY=Z
35 34 adantld Z=BX=BYXZXY=Z
36 35 ex Z=BX=BYXZXY=Z
37 36 a1d Z=BY=AY=BX=BYXZXY=Z
38 32 37 jaoi Z=AZ=BY=AY=BX=BYXZXY=Z
39 38 com13 X=BY=AY=BZ=AZ=BYXZXY=Z
40 22 39 jaoi X=AX=BY=AY=BZ=AZ=BYXZXY=Z
41 40 3imp X=AX=BY=AY=BZ=AZ=BYXZXY=Z
42 1 2 3 41 syl3an XABYABZABYXZXY=Z
43 42 imp XABYABZABYXZXY=Z