Description: If there are three elements in a proper unordered pair, and two of them are different from the third one, the two must be equal. (Contributed by AV, 19-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | 3elpr2eq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpri | |
|
2 | elpri | |
|
3 | elpri | |
|
4 | eqtr3 | |
|
5 | eqneqall | |
|
6 | 4 5 | syl | |
7 | 6 | adantld | |
8 | 7 | ex | |
9 | 8 | a1d | |
10 | eqtr3 | |
|
11 | eqneqall | |
|
12 | 10 11 | syl | |
13 | 12 | impd | |
14 | 13 | ex | |
15 | 14 | a1d | |
16 | eqtr3 | |
|
17 | 16 | 2a1d | |
18 | 17 | ex | |
19 | 15 18 | jaoi | |
20 | 19 | com12 | |
21 | 9 20 | jaoi | |
22 | 21 | com13 | |
23 | eqtr3 | |
|
24 | 23 | 2a1d | |
25 | 24 | ex | |
26 | eqtr3 | |
|
27 | 26 11 | syl | |
28 | 27 | impd | |
29 | 28 | ex | |
30 | 29 | a1d | |
31 | 25 30 | jaoi | |
32 | 31 | com12 | |
33 | eqtr3 | |
|
34 | 33 5 | syl | |
35 | 34 | adantld | |
36 | 35 | ex | |
37 | 36 | a1d | |
38 | 32 37 | jaoi | |
39 | 38 | com13 | |
40 | 22 39 | jaoi | |
41 | 40 | 3imp | |
42 | 1 2 3 41 | syl3an | |
43 | 42 | imp | |