| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elpri | ⊢ ( 𝑋  ∈  { 𝐴 ,  𝐵 }  →  ( 𝑋  =  𝐴  ∨  𝑋  =  𝐵 ) ) | 
						
							| 2 |  | elpri | ⊢ ( 𝑌  ∈  { 𝐴 ,  𝐵 }  →  ( 𝑌  =  𝐴  ∨  𝑌  =  𝐵 ) ) | 
						
							| 3 |  | elpri | ⊢ ( 𝑍  ∈  { 𝐴 ,  𝐵 }  →  ( 𝑍  =  𝐴  ∨  𝑍  =  𝐵 ) ) | 
						
							| 4 |  | eqtr3 | ⊢ ( ( 𝑍  =  𝐴  ∧  𝑋  =  𝐴 )  →  𝑍  =  𝑋 ) | 
						
							| 5 |  | eqneqall | ⊢ ( 𝑍  =  𝑋  →  ( 𝑍  ≠  𝑋  →  𝑌  =  𝑍 ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( 𝑍  =  𝐴  ∧  𝑋  =  𝐴 )  →  ( 𝑍  ≠  𝑋  →  𝑌  =  𝑍 ) ) | 
						
							| 7 | 6 | adantld | ⊢ ( ( 𝑍  =  𝐴  ∧  𝑋  =  𝐴 )  →  ( ( 𝑌  ≠  𝑋  ∧  𝑍  ≠  𝑋 )  →  𝑌  =  𝑍 ) ) | 
						
							| 8 | 7 | ex | ⊢ ( 𝑍  =  𝐴  →  ( 𝑋  =  𝐴  →  ( ( 𝑌  ≠  𝑋  ∧  𝑍  ≠  𝑋 )  →  𝑌  =  𝑍 ) ) ) | 
						
							| 9 | 8 | a1d | ⊢ ( 𝑍  =  𝐴  →  ( ( 𝑌  =  𝐴  ∨  𝑌  =  𝐵 )  →  ( 𝑋  =  𝐴  →  ( ( 𝑌  ≠  𝑋  ∧  𝑍  ≠  𝑋 )  →  𝑌  =  𝑍 ) ) ) ) | 
						
							| 10 |  | eqtr3 | ⊢ ( ( 𝑌  =  𝐴  ∧  𝑋  =  𝐴 )  →  𝑌  =  𝑋 ) | 
						
							| 11 |  | eqneqall | ⊢ ( 𝑌  =  𝑋  →  ( 𝑌  ≠  𝑋  →  ( 𝑍  ≠  𝑋  →  𝑌  =  𝑍 ) ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( 𝑌  =  𝐴  ∧  𝑋  =  𝐴 )  →  ( 𝑌  ≠  𝑋  →  ( 𝑍  ≠  𝑋  →  𝑌  =  𝑍 ) ) ) | 
						
							| 13 | 12 | impd | ⊢ ( ( 𝑌  =  𝐴  ∧  𝑋  =  𝐴 )  →  ( ( 𝑌  ≠  𝑋  ∧  𝑍  ≠  𝑋 )  →  𝑌  =  𝑍 ) ) | 
						
							| 14 | 13 | ex | ⊢ ( 𝑌  =  𝐴  →  ( 𝑋  =  𝐴  →  ( ( 𝑌  ≠  𝑋  ∧  𝑍  ≠  𝑋 )  →  𝑌  =  𝑍 ) ) ) | 
						
							| 15 | 14 | a1d | ⊢ ( 𝑌  =  𝐴  →  ( 𝑍  =  𝐵  →  ( 𝑋  =  𝐴  →  ( ( 𝑌  ≠  𝑋  ∧  𝑍  ≠  𝑋 )  →  𝑌  =  𝑍 ) ) ) ) | 
						
							| 16 |  | eqtr3 | ⊢ ( ( 𝑌  =  𝐵  ∧  𝑍  =  𝐵 )  →  𝑌  =  𝑍 ) | 
						
							| 17 | 16 | 2a1d | ⊢ ( ( 𝑌  =  𝐵  ∧  𝑍  =  𝐵 )  →  ( 𝑋  =  𝐴  →  ( ( 𝑌  ≠  𝑋  ∧  𝑍  ≠  𝑋 )  →  𝑌  =  𝑍 ) ) ) | 
						
							| 18 | 17 | ex | ⊢ ( 𝑌  =  𝐵  →  ( 𝑍  =  𝐵  →  ( 𝑋  =  𝐴  →  ( ( 𝑌  ≠  𝑋  ∧  𝑍  ≠  𝑋 )  →  𝑌  =  𝑍 ) ) ) ) | 
						
							| 19 | 15 18 | jaoi | ⊢ ( ( 𝑌  =  𝐴  ∨  𝑌  =  𝐵 )  →  ( 𝑍  =  𝐵  →  ( 𝑋  =  𝐴  →  ( ( 𝑌  ≠  𝑋  ∧  𝑍  ≠  𝑋 )  →  𝑌  =  𝑍 ) ) ) ) | 
						
							| 20 | 19 | com12 | ⊢ ( 𝑍  =  𝐵  →  ( ( 𝑌  =  𝐴  ∨  𝑌  =  𝐵 )  →  ( 𝑋  =  𝐴  →  ( ( 𝑌  ≠  𝑋  ∧  𝑍  ≠  𝑋 )  →  𝑌  =  𝑍 ) ) ) ) | 
						
							| 21 | 9 20 | jaoi | ⊢ ( ( 𝑍  =  𝐴  ∨  𝑍  =  𝐵 )  →  ( ( 𝑌  =  𝐴  ∨  𝑌  =  𝐵 )  →  ( 𝑋  =  𝐴  →  ( ( 𝑌  ≠  𝑋  ∧  𝑍  ≠  𝑋 )  →  𝑌  =  𝑍 ) ) ) ) | 
						
							| 22 | 21 | com13 | ⊢ ( 𝑋  =  𝐴  →  ( ( 𝑌  =  𝐴  ∨  𝑌  =  𝐵 )  →  ( ( 𝑍  =  𝐴  ∨  𝑍  =  𝐵 )  →  ( ( 𝑌  ≠  𝑋  ∧  𝑍  ≠  𝑋 )  →  𝑌  =  𝑍 ) ) ) ) | 
						
							| 23 |  | eqtr3 | ⊢ ( ( 𝑌  =  𝐴  ∧  𝑍  =  𝐴 )  →  𝑌  =  𝑍 ) | 
						
							| 24 | 23 | 2a1d | ⊢ ( ( 𝑌  =  𝐴  ∧  𝑍  =  𝐴 )  →  ( 𝑋  =  𝐵  →  ( ( 𝑌  ≠  𝑋  ∧  𝑍  ≠  𝑋 )  →  𝑌  =  𝑍 ) ) ) | 
						
							| 25 | 24 | ex | ⊢ ( 𝑌  =  𝐴  →  ( 𝑍  =  𝐴  →  ( 𝑋  =  𝐵  →  ( ( 𝑌  ≠  𝑋  ∧  𝑍  ≠  𝑋 )  →  𝑌  =  𝑍 ) ) ) ) | 
						
							| 26 |  | eqtr3 | ⊢ ( ( 𝑌  =  𝐵  ∧  𝑋  =  𝐵 )  →  𝑌  =  𝑋 ) | 
						
							| 27 | 26 11 | syl | ⊢ ( ( 𝑌  =  𝐵  ∧  𝑋  =  𝐵 )  →  ( 𝑌  ≠  𝑋  →  ( 𝑍  ≠  𝑋  →  𝑌  =  𝑍 ) ) ) | 
						
							| 28 | 27 | impd | ⊢ ( ( 𝑌  =  𝐵  ∧  𝑋  =  𝐵 )  →  ( ( 𝑌  ≠  𝑋  ∧  𝑍  ≠  𝑋 )  →  𝑌  =  𝑍 ) ) | 
						
							| 29 | 28 | ex | ⊢ ( 𝑌  =  𝐵  →  ( 𝑋  =  𝐵  →  ( ( 𝑌  ≠  𝑋  ∧  𝑍  ≠  𝑋 )  →  𝑌  =  𝑍 ) ) ) | 
						
							| 30 | 29 | a1d | ⊢ ( 𝑌  =  𝐵  →  ( 𝑍  =  𝐴  →  ( 𝑋  =  𝐵  →  ( ( 𝑌  ≠  𝑋  ∧  𝑍  ≠  𝑋 )  →  𝑌  =  𝑍 ) ) ) ) | 
						
							| 31 | 25 30 | jaoi | ⊢ ( ( 𝑌  =  𝐴  ∨  𝑌  =  𝐵 )  →  ( 𝑍  =  𝐴  →  ( 𝑋  =  𝐵  →  ( ( 𝑌  ≠  𝑋  ∧  𝑍  ≠  𝑋 )  →  𝑌  =  𝑍 ) ) ) ) | 
						
							| 32 | 31 | com12 | ⊢ ( 𝑍  =  𝐴  →  ( ( 𝑌  =  𝐴  ∨  𝑌  =  𝐵 )  →  ( 𝑋  =  𝐵  →  ( ( 𝑌  ≠  𝑋  ∧  𝑍  ≠  𝑋 )  →  𝑌  =  𝑍 ) ) ) ) | 
						
							| 33 |  | eqtr3 | ⊢ ( ( 𝑍  =  𝐵  ∧  𝑋  =  𝐵 )  →  𝑍  =  𝑋 ) | 
						
							| 34 | 33 5 | syl | ⊢ ( ( 𝑍  =  𝐵  ∧  𝑋  =  𝐵 )  →  ( 𝑍  ≠  𝑋  →  𝑌  =  𝑍 ) ) | 
						
							| 35 | 34 | adantld | ⊢ ( ( 𝑍  =  𝐵  ∧  𝑋  =  𝐵 )  →  ( ( 𝑌  ≠  𝑋  ∧  𝑍  ≠  𝑋 )  →  𝑌  =  𝑍 ) ) | 
						
							| 36 | 35 | ex | ⊢ ( 𝑍  =  𝐵  →  ( 𝑋  =  𝐵  →  ( ( 𝑌  ≠  𝑋  ∧  𝑍  ≠  𝑋 )  →  𝑌  =  𝑍 ) ) ) | 
						
							| 37 | 36 | a1d | ⊢ ( 𝑍  =  𝐵  →  ( ( 𝑌  =  𝐴  ∨  𝑌  =  𝐵 )  →  ( 𝑋  =  𝐵  →  ( ( 𝑌  ≠  𝑋  ∧  𝑍  ≠  𝑋 )  →  𝑌  =  𝑍 ) ) ) ) | 
						
							| 38 | 32 37 | jaoi | ⊢ ( ( 𝑍  =  𝐴  ∨  𝑍  =  𝐵 )  →  ( ( 𝑌  =  𝐴  ∨  𝑌  =  𝐵 )  →  ( 𝑋  =  𝐵  →  ( ( 𝑌  ≠  𝑋  ∧  𝑍  ≠  𝑋 )  →  𝑌  =  𝑍 ) ) ) ) | 
						
							| 39 | 38 | com13 | ⊢ ( 𝑋  =  𝐵  →  ( ( 𝑌  =  𝐴  ∨  𝑌  =  𝐵 )  →  ( ( 𝑍  =  𝐴  ∨  𝑍  =  𝐵 )  →  ( ( 𝑌  ≠  𝑋  ∧  𝑍  ≠  𝑋 )  →  𝑌  =  𝑍 ) ) ) ) | 
						
							| 40 | 22 39 | jaoi | ⊢ ( ( 𝑋  =  𝐴  ∨  𝑋  =  𝐵 )  →  ( ( 𝑌  =  𝐴  ∨  𝑌  =  𝐵 )  →  ( ( 𝑍  =  𝐴  ∨  𝑍  =  𝐵 )  →  ( ( 𝑌  ≠  𝑋  ∧  𝑍  ≠  𝑋 )  →  𝑌  =  𝑍 ) ) ) ) | 
						
							| 41 | 40 | 3imp | ⊢ ( ( ( 𝑋  =  𝐴  ∨  𝑋  =  𝐵 )  ∧  ( 𝑌  =  𝐴  ∨  𝑌  =  𝐵 )  ∧  ( 𝑍  =  𝐴  ∨  𝑍  =  𝐵 ) )  →  ( ( 𝑌  ≠  𝑋  ∧  𝑍  ≠  𝑋 )  →  𝑌  =  𝑍 ) ) | 
						
							| 42 | 1 2 3 41 | syl3an | ⊢ ( ( 𝑋  ∈  { 𝐴 ,  𝐵 }  ∧  𝑌  ∈  { 𝐴 ,  𝐵 }  ∧  𝑍  ∈  { 𝐴 ,  𝐵 } )  →  ( ( 𝑌  ≠  𝑋  ∧  𝑍  ≠  𝑋 )  →  𝑌  =  𝑍 ) ) | 
						
							| 43 | 42 | imp | ⊢ ( ( ( 𝑋  ∈  { 𝐴 ,  𝐵 }  ∧  𝑌  ∈  { 𝐴 ,  𝐵 }  ∧  𝑍  ∈  { 𝐴 ,  𝐵 } )  ∧  ( 𝑌  ≠  𝑋  ∧  𝑍  ≠  𝑋 ) )  →  𝑌  =  𝑍 ) |