Description: The finite union of finite sets is finite. Exercise 13 of Enderton p. 144. This is the indexed union version of unifi . Note that B depends on x , i.e. can be thought of as B ( x ) . (Contributed by NM, 23-Mar-2006) (Proof shortened by Mario Carneiro, 31-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | iunfi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq | |
|
2 | iuneq1 | |
|
3 | 0iun | |
|
4 | 2 3 | eqtrdi | |
5 | 4 | eleq1d | |
6 | 1 5 | imbi12d | |
7 | raleq | |
|
8 | iuneq1 | |
|
9 | 8 | eleq1d | |
10 | 7 9 | imbi12d | |
11 | raleq | |
|
12 | iuneq1 | |
|
13 | 12 | eleq1d | |
14 | 11 13 | imbi12d | |
15 | raleq | |
|
16 | iuneq1 | |
|
17 | 16 | eleq1d | |
18 | 15 17 | imbi12d | |
19 | 0fin | |
|
20 | 19 | a1i | |
21 | ssun1 | |
|
22 | ssralv | |
|
23 | 21 22 | ax-mp | |
24 | 23 | imim1i | |
25 | iunxun | |
|
26 | nfcv | |
|
27 | nfcsb1v | |
|
28 | csbeq1a | |
|
29 | 26 27 28 | cbviun | |
30 | vex | |
|
31 | csbeq1 | |
|
32 | 30 31 | iunxsn | |
33 | 29 32 | eqtri | |
34 | ssun2 | |
|
35 | vsnid | |
|
36 | 34 35 | sselii | |
37 | nfcsb1v | |
|
38 | 37 | nfel1 | |
39 | csbeq1a | |
|
40 | 39 | eleq1d | |
41 | 38 40 | rspc | |
42 | 36 41 | ax-mp | |
43 | 33 42 | eqeltrid | |
44 | unfi | |
|
45 | 43 44 | sylan2 | |
46 | 25 45 | eqeltrid | |
47 | 46 | expcom | |
48 | 24 47 | sylcom | |
49 | 48 | a1i | |
50 | 6 10 14 18 20 49 | findcard2 | |
51 | 50 | imp | |