Metamath Proof Explorer


Theorem unifi

Description: The finite union of finite sets is finite. Exercise 13 of Enderton p. 144. (Contributed by NM, 22-Aug-2008) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion unifi AFinAFinAFin

Proof

Step Hyp Ref Expression
1 dfss3 AFinxAxFin
2 uniiun A=xAx
3 iunfi AFinxAxFinxAxFin
4 2 3 eqeltrid AFinxAxFinAFin
5 1 4 sylan2b AFinAFinAFin