Metamath Proof Explorer


Theorem unifi2

Description: The finite union of finite sets is finite. Exercise 13 of Enderton p. 144. This version of unifi is useful only if we assume the Axiom of Infinity (see comments in fin2inf ). (Contributed by NM, 11-Mar-2006)

Ref Expression
Assertion unifi2 AωxAxωAω

Proof

Step Hyp Ref Expression
1 isfinite2 AωAFin
2 isfinite2 xωxFin
3 2 ralimi xAxωxAxFin
4 dfss3 AFinxAxFin
5 3 4 sylibr xAxωAFin
6 unifi AFinAFinAFin
7 1 5 6 syl2an AωxAxωAFin
8 fin2inf AωωV
9 8 adantr AωxAxωωV
10 isfiniteg ωVAFinAω
11 9 10 syl AωxAxωAFinAω
12 7 11 mpbid AωxAxωAω