| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evenelz |
|- ( 2 || N -> N e. ZZ ) |
| 2 |
|
2z |
|- 2 e. ZZ |
| 3 |
2
|
a1i |
|- ( n e. ZZ -> 2 e. ZZ ) |
| 4 |
|
id |
|- ( n e. ZZ -> n e. ZZ ) |
| 5 |
3 4
|
zmulcld |
|- ( n e. ZZ -> ( 2 x. n ) e. ZZ ) |
| 6 |
5
|
adantr |
|- ( ( n e. ZZ /\ ( 2 x. n ) = N ) -> ( 2 x. n ) e. ZZ ) |
| 7 |
|
eleq1 |
|- ( ( 2 x. n ) = N -> ( ( 2 x. n ) e. ZZ <-> N e. ZZ ) ) |
| 8 |
7
|
adantl |
|- ( ( n e. ZZ /\ ( 2 x. n ) = N ) -> ( ( 2 x. n ) e. ZZ <-> N e. ZZ ) ) |
| 9 |
6 8
|
mpbid |
|- ( ( n e. ZZ /\ ( 2 x. n ) = N ) -> N e. ZZ ) |
| 10 |
9
|
rexlimiva |
|- ( E. n e. ZZ ( 2 x. n ) = N -> N e. ZZ ) |
| 11 |
|
divides |
|- ( ( 2 e. ZZ /\ N e. ZZ ) -> ( 2 || N <-> E. n e. ZZ ( n x. 2 ) = N ) ) |
| 12 |
|
zcn |
|- ( n e. ZZ -> n e. CC ) |
| 13 |
|
2cnd |
|- ( n e. ZZ -> 2 e. CC ) |
| 14 |
12 13
|
mulcomd |
|- ( n e. ZZ -> ( n x. 2 ) = ( 2 x. n ) ) |
| 15 |
14
|
eqeq1d |
|- ( n e. ZZ -> ( ( n x. 2 ) = N <-> ( 2 x. n ) = N ) ) |
| 16 |
15
|
rexbiia |
|- ( E. n e. ZZ ( n x. 2 ) = N <-> E. n e. ZZ ( 2 x. n ) = N ) |
| 17 |
11 16
|
bitrdi |
|- ( ( 2 e. ZZ /\ N e. ZZ ) -> ( 2 || N <-> E. n e. ZZ ( 2 x. n ) = N ) ) |
| 18 |
2 17
|
mpan |
|- ( N e. ZZ -> ( 2 || N <-> E. n e. ZZ ( 2 x. n ) = N ) ) |
| 19 |
1 10 18
|
pm5.21nii |
|- ( 2 || N <-> E. n e. ZZ ( 2 x. n ) = N ) |