Description: If every term in a sum with an even number of terms is odd, then the sum is even. (Contributed by AV, 14-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evensumodd.a | |- ( ph -> A e. Fin ) |
|
| evensumodd.b | |- ( ( ph /\ k e. A ) -> B e. ZZ ) |
||
| evensumodd.o | |- ( ( ph /\ k e. A ) -> -. 2 || B ) |
||
| evensumodd.e | |- ( ph -> 2 || ( # ` A ) ) |
||
| Assertion | evensumodd | |- ( ph -> 2 || sum_ k e. A B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evensumodd.a | |- ( ph -> A e. Fin ) |
|
| 2 | evensumodd.b | |- ( ( ph /\ k e. A ) -> B e. ZZ ) |
|
| 3 | evensumodd.o | |- ( ( ph /\ k e. A ) -> -. 2 || B ) |
|
| 4 | evensumodd.e | |- ( ph -> 2 || ( # ` A ) ) |
|
| 5 | 1 2 3 | sumodd | |- ( ph -> ( 2 || ( # ` A ) <-> 2 || sum_ k e. A B ) ) |
| 6 | 4 5 | mpbid | |- ( ph -> 2 || sum_ k e. A B ) |