Metamath Proof Explorer
Description: If every term in a sum with an even number of terms is odd, then the
sum is even. (Contributed by AV, 14-Aug-2021)
|
|
Ref |
Expression |
|
Hypotheses |
evensumodd.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
|
|
evensumodd.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℤ ) |
|
|
evensumodd.o |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ¬ 2 ∥ 𝐵 ) |
|
|
evensumodd.e |
⊢ ( 𝜑 → 2 ∥ ( ♯ ‘ 𝐴 ) ) |
|
Assertion |
evensumodd |
⊢ ( 𝜑 → 2 ∥ Σ 𝑘 ∈ 𝐴 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
evensumodd.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
evensumodd.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℤ ) |
3 |
|
evensumodd.o |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ¬ 2 ∥ 𝐵 ) |
4 |
|
evensumodd.e |
⊢ ( 𝜑 → 2 ∥ ( ♯ ‘ 𝐴 ) ) |
5 |
1 2 3
|
sumodd |
⊢ ( 𝜑 → ( 2 ∥ ( ♯ ‘ 𝐴 ) ↔ 2 ∥ Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
6 |
4 5
|
mpbid |
⊢ ( 𝜑 → 2 ∥ Σ 𝑘 ∈ 𝐴 𝐵 ) |