| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sumeven.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 2 |
|
sumeven.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℤ ) |
| 3 |
|
sumodd.o |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ¬ 2 ∥ 𝐵 ) |
| 4 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ∅ ) ) |
| 5 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
| 6 |
4 5
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = 0 ) |
| 7 |
6
|
breq2d |
⊢ ( 𝑥 = ∅ → ( 2 ∥ ( ♯ ‘ 𝑥 ) ↔ 2 ∥ 0 ) ) |
| 8 |
|
sumeq1 |
⊢ ( 𝑥 = ∅ → Σ 𝑘 ∈ 𝑥 𝐵 = Σ 𝑘 ∈ ∅ 𝐵 ) |
| 9 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ 𝐵 = 0 |
| 10 |
8 9
|
eqtrdi |
⊢ ( 𝑥 = ∅ → Σ 𝑘 ∈ 𝑥 𝐵 = 0 ) |
| 11 |
10
|
breq2d |
⊢ ( 𝑥 = ∅ → ( 2 ∥ Σ 𝑘 ∈ 𝑥 𝐵 ↔ 2 ∥ 0 ) ) |
| 12 |
7 11
|
bibi12d |
⊢ ( 𝑥 = ∅ → ( ( 2 ∥ ( ♯ ‘ 𝑥 ) ↔ 2 ∥ Σ 𝑘 ∈ 𝑥 𝐵 ) ↔ ( 2 ∥ 0 ↔ 2 ∥ 0 ) ) ) |
| 13 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) |
| 14 |
13
|
breq2d |
⊢ ( 𝑥 = 𝑦 → ( 2 ∥ ( ♯ ‘ 𝑥 ) ↔ 2 ∥ ( ♯ ‘ 𝑦 ) ) ) |
| 15 |
|
sumeq1 |
⊢ ( 𝑥 = 𝑦 → Σ 𝑘 ∈ 𝑥 𝐵 = Σ 𝑘 ∈ 𝑦 𝐵 ) |
| 16 |
15
|
breq2d |
⊢ ( 𝑥 = 𝑦 → ( 2 ∥ Σ 𝑘 ∈ 𝑥 𝐵 ↔ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) ) |
| 17 |
14 16
|
bibi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 2 ∥ ( ♯ ‘ 𝑥 ) ↔ 2 ∥ Σ 𝑘 ∈ 𝑥 𝐵 ) ↔ ( 2 ∥ ( ♯ ‘ 𝑦 ) ↔ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) ) ) |
| 18 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 19 |
18
|
breq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 2 ∥ ( ♯ ‘ 𝑥 ) ↔ 2 ∥ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 20 |
|
sumeq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → Σ 𝑘 ∈ 𝑥 𝐵 = Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) |
| 21 |
20
|
breq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 2 ∥ Σ 𝑘 ∈ 𝑥 𝐵 ↔ 2 ∥ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) |
| 22 |
19 21
|
bibi12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 2 ∥ ( ♯ ‘ 𝑥 ) ↔ 2 ∥ Σ 𝑘 ∈ 𝑥 𝐵 ) ↔ ( 2 ∥ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ↔ 2 ∥ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) ) |
| 23 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐴 ) ) |
| 24 |
23
|
breq2d |
⊢ ( 𝑥 = 𝐴 → ( 2 ∥ ( ♯ ‘ 𝑥 ) ↔ 2 ∥ ( ♯ ‘ 𝐴 ) ) ) |
| 25 |
|
sumeq1 |
⊢ ( 𝑥 = 𝐴 → Σ 𝑘 ∈ 𝑥 𝐵 = Σ 𝑘 ∈ 𝐴 𝐵 ) |
| 26 |
25
|
breq2d |
⊢ ( 𝑥 = 𝐴 → ( 2 ∥ Σ 𝑘 ∈ 𝑥 𝐵 ↔ 2 ∥ Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 27 |
24 26
|
bibi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 2 ∥ ( ♯ ‘ 𝑥 ) ↔ 2 ∥ Σ 𝑘 ∈ 𝑥 𝐵 ) ↔ ( 2 ∥ ( ♯ ‘ 𝐴 ) ↔ 2 ∥ Σ 𝑘 ∈ 𝐴 𝐵 ) ) ) |
| 28 |
|
biidd |
⊢ ( 𝜑 → ( 2 ∥ 0 ↔ 2 ∥ 0 ) ) |
| 29 |
|
eldifi |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) → 𝑧 ∈ 𝐴 ) |
| 30 |
29
|
adantl |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑧 ∈ 𝐴 ) |
| 31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑧 ∈ 𝐴 ) |
| 32 |
2
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℤ ) |
| 33 |
32
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) |
| 34 |
|
rspcsbela |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℤ ) |
| 35 |
31 33 34
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℤ ) |
| 36 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 ¬ 2 ∥ 𝐵 ) |
| 37 |
|
nfcv |
⊢ Ⅎ 𝑘 2 |
| 38 |
|
nfcv |
⊢ Ⅎ 𝑘 ∥ |
| 39 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐵 |
| 40 |
37 38 39
|
nfbr |
⊢ Ⅎ 𝑘 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 |
| 41 |
40
|
nfn |
⊢ Ⅎ 𝑘 ¬ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 |
| 42 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑧 → 𝐵 = ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) |
| 43 |
42
|
breq2d |
⊢ ( 𝑘 = 𝑧 → ( 2 ∥ 𝐵 ↔ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 44 |
43
|
notbid |
⊢ ( 𝑘 = 𝑧 → ( ¬ 2 ∥ 𝐵 ↔ ¬ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 45 |
41 44
|
rspc |
⊢ ( 𝑧 ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 ¬ 2 ∥ 𝐵 → ¬ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 46 |
29 45
|
syl |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) → ( ∀ 𝑘 ∈ 𝐴 ¬ 2 ∥ 𝐵 → ¬ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 47 |
36 46
|
syl5com |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) → ¬ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 48 |
47
|
a1d |
⊢ ( 𝜑 → ( 𝑦 ⊆ 𝐴 → ( 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) → ¬ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 49 |
48
|
imp32 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ¬ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) |
| 50 |
35 49
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℤ ∧ ¬ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 51 |
50
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) → ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℤ ∧ ¬ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 52 |
|
ssfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ∈ Fin ) |
| 53 |
52
|
expcom |
⊢ ( 𝑦 ⊆ 𝐴 → ( 𝐴 ∈ Fin → 𝑦 ∈ Fin ) ) |
| 54 |
53
|
adantr |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → ( 𝐴 ∈ Fin → 𝑦 ∈ Fin ) ) |
| 55 |
1 54
|
syl5com |
⊢ ( 𝜑 → ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑦 ∈ Fin ) ) |
| 56 |
55
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑦 ∈ Fin ) |
| 57 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝜑 ) |
| 58 |
|
ssel |
⊢ ( 𝑦 ⊆ 𝐴 → ( 𝑘 ∈ 𝑦 → 𝑘 ∈ 𝐴 ) ) |
| 59 |
58
|
adantr |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → ( 𝑘 ∈ 𝑦 → 𝑘 ∈ 𝐴 ) ) |
| 60 |
59
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( 𝑘 ∈ 𝑦 → 𝑘 ∈ 𝐴 ) ) |
| 61 |
60
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝑘 ∈ 𝐴 ) |
| 62 |
57 61 2
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝐵 ∈ ℤ ) |
| 63 |
56 62
|
fsumzcl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → Σ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ) |
| 64 |
63
|
anim1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) → ( Σ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) ) |
| 65 |
|
opeo |
⊢ ( ( ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℤ ∧ ¬ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∧ ( Σ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) ) → ¬ 2 ∥ ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 + Σ 𝑘 ∈ 𝑦 𝐵 ) ) |
| 66 |
51 64 65
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) → ¬ 2 ∥ ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 + Σ 𝑘 ∈ 𝑦 𝐵 ) ) |
| 67 |
63
|
zcnd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → Σ 𝑘 ∈ 𝑦 𝐵 ∈ ℂ ) |
| 68 |
35
|
zcnd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 69 |
|
addcom |
⊢ ( ( Σ 𝑘 ∈ 𝑦 𝐵 ∈ ℂ ∧ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) → ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) = ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 + Σ 𝑘 ∈ 𝑦 𝐵 ) ) |
| 70 |
69
|
breq2d |
⊢ ( ( Σ 𝑘 ∈ 𝑦 𝐵 ∈ ℂ ∧ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) → ( 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ↔ 2 ∥ ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 + Σ 𝑘 ∈ 𝑦 𝐵 ) ) ) |
| 71 |
70
|
notbid |
⊢ ( ( Σ 𝑘 ∈ 𝑦 𝐵 ∈ ℂ ∧ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) → ( ¬ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ↔ ¬ 2 ∥ ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 + Σ 𝑘 ∈ 𝑦 𝐵 ) ) ) |
| 72 |
67 68 71
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ¬ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ↔ ¬ 2 ∥ ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 + Σ 𝑘 ∈ 𝑦 𝐵 ) ) ) |
| 73 |
72
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) → ( ¬ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ↔ ¬ 2 ∥ ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 + Σ 𝑘 ∈ 𝑦 𝐵 ) ) ) |
| 74 |
66 73
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) → ¬ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 75 |
74
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 → ¬ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 76 |
63
|
anim1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ¬ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) → ( Σ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ ¬ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) ) |
| 77 |
50
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ¬ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) → ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℤ ∧ ¬ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 78 |
|
opoe |
⊢ ( ( ( Σ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ ¬ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) ∧ ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℤ ∧ ¬ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) → 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 79 |
76 77 78
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ¬ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) → 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 80 |
79
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ¬ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 → 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 81 |
80
|
con1d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ¬ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) → 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) ) |
| 82 |
75 81
|
impbid |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ↔ ¬ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 83 |
|
bitr3 |
⊢ ( ( 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ↔ ¬ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) → ( ( 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ↔ ¬ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ¬ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ↔ ¬ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) |
| 84 |
82 83
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ( 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ↔ ¬ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ¬ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ↔ ¬ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) |
| 85 |
|
bicom |
⊢ ( ( ¬ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ↔ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) ↔ ( 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ↔ ¬ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 86 |
|
bicom |
⊢ ( ( ¬ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ↔ ¬ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ↔ ( ¬ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ↔ ¬ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 87 |
84 85 86
|
3imtr4g |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ( ¬ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ↔ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) → ( ¬ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ↔ ¬ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) ) |
| 88 |
|
notnotb |
⊢ ( 2 ∥ ( ♯ ‘ 𝑦 ) ↔ ¬ ¬ 2 ∥ ( ♯ ‘ 𝑦 ) ) |
| 89 |
|
hashcl |
⊢ ( 𝑦 ∈ Fin → ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) |
| 90 |
56 89
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) |
| 91 |
90
|
nn0zd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ♯ ‘ 𝑦 ) ∈ ℤ ) |
| 92 |
|
oddp1even |
⊢ ( ( ♯ ‘ 𝑦 ) ∈ ℤ → ( ¬ 2 ∥ ( ♯ ‘ 𝑦 ) ↔ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 93 |
91 92
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ¬ 2 ∥ ( ♯ ‘ 𝑦 ) ↔ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 94 |
93
|
notbid |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ¬ ¬ 2 ∥ ( ♯ ‘ 𝑦 ) ↔ ¬ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 95 |
88 94
|
bitrid |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( 2 ∥ ( ♯ ‘ 𝑦 ) ↔ ¬ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 96 |
95
|
bibi1d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ( 2 ∥ ( ♯ ‘ 𝑦 ) ↔ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) ↔ ( ¬ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ↔ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) ) ) |
| 97 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) |
| 98 |
|
eldifn |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) → ¬ 𝑧 ∈ 𝑦 ) |
| 99 |
98
|
adantl |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → ¬ 𝑧 ∈ 𝑦 ) |
| 100 |
99
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ¬ 𝑧 ∈ 𝑦 ) |
| 101 |
56 100
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) |
| 102 |
|
hashunsng |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 103 |
97 101 102
|
sylc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) |
| 104 |
103
|
breq2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( 2 ∥ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ↔ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 105 |
|
vex |
⊢ 𝑧 ∈ V |
| 106 |
105
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑧 ∈ V ) |
| 107 |
|
df-nel |
⊢ ( 𝑧 ∉ 𝑦 ↔ ¬ 𝑧 ∈ 𝑦 ) |
| 108 |
100 107
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑧 ∉ 𝑦 ) |
| 109 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝜑 ) |
| 110 |
|
elun |
⊢ ( 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑘 ∈ 𝑦 ∨ 𝑘 ∈ { 𝑧 } ) ) |
| 111 |
59
|
com12 |
⊢ ( 𝑘 ∈ 𝑦 → ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑘 ∈ 𝐴 ) ) |
| 112 |
|
elsni |
⊢ ( 𝑘 ∈ { 𝑧 } → 𝑘 = 𝑧 ) |
| 113 |
|
eleq1w |
⊢ ( 𝑘 = 𝑧 → ( 𝑘 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) |
| 114 |
30 113
|
imbitrrid |
⊢ ( 𝑘 = 𝑧 → ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑘 ∈ 𝐴 ) ) |
| 115 |
112 114
|
syl |
⊢ ( 𝑘 ∈ { 𝑧 } → ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑘 ∈ 𝐴 ) ) |
| 116 |
111 115
|
jaoi |
⊢ ( ( 𝑘 ∈ 𝑦 ∨ 𝑘 ∈ { 𝑧 } ) → ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑘 ∈ 𝐴 ) ) |
| 117 |
110 116
|
sylbi |
⊢ ( 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑘 ∈ 𝐴 ) ) |
| 118 |
117
|
com12 |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → ( 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) → 𝑘 ∈ 𝐴 ) ) |
| 119 |
118
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) → 𝑘 ∈ 𝐴 ) ) |
| 120 |
119
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑘 ∈ 𝐴 ) |
| 121 |
109 120 2
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝐵 ∈ ℤ ) |
| 122 |
121
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ ℤ ) |
| 123 |
|
fsumsplitsnun |
⊢ ( ( 𝑦 ∈ Fin ∧ ( 𝑧 ∈ V ∧ 𝑧 ∉ 𝑦 ) ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ ℤ ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 124 |
56 106 108 122 123
|
syl121anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 125 |
124
|
breq2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( 2 ∥ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ↔ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 126 |
104 125
|
bibi12d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ( 2 ∥ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ↔ 2 ∥ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ↔ ( 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ↔ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) ) |
| 127 |
|
notbi |
⊢ ( ( 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ↔ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ↔ ( ¬ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ↔ ¬ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 128 |
126 127
|
bitrdi |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ( 2 ∥ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ↔ 2 ∥ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ↔ ( ¬ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ↔ ¬ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) ) |
| 129 |
87 96 128
|
3imtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ( 2 ∥ ( ♯ ‘ 𝑦 ) ↔ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) → ( 2 ∥ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ↔ 2 ∥ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) ) |
| 130 |
12 17 22 27 28 129 1
|
findcard2d |
⊢ ( 𝜑 → ( 2 ∥ ( ♯ ‘ 𝐴 ) ↔ 2 ∥ Σ 𝑘 ∈ 𝐴 𝐵 ) ) |