Metamath Proof Explorer


Theorem evls1scafv

Description: Value of the univariate polynomial evaluation for scalars. (Contributed by Thierry Arnoux, 21-Jan-2025)

Ref Expression
Hypotheses evls1scafv.q
|- Q = ( S evalSub1 R )
evls1scafv.w
|- W = ( Poly1 ` U )
evls1scafv.u
|- U = ( S |`s R )
evls1scafv.b
|- B = ( Base ` S )
evls1scafv.a
|- A = ( algSc ` W )
evls1scafv.s
|- ( ph -> S e. CRing )
evls1scafv.r
|- ( ph -> R e. ( SubRing ` S ) )
evls1scafv.x
|- ( ph -> X e. R )
evls1scafv.1
|- ( ph -> C e. B )
Assertion evls1scafv
|- ( ph -> ( ( Q ` ( A ` X ) ) ` C ) = X )

Proof

Step Hyp Ref Expression
1 evls1scafv.q
 |-  Q = ( S evalSub1 R )
2 evls1scafv.w
 |-  W = ( Poly1 ` U )
3 evls1scafv.u
 |-  U = ( S |`s R )
4 evls1scafv.b
 |-  B = ( Base ` S )
5 evls1scafv.a
 |-  A = ( algSc ` W )
6 evls1scafv.s
 |-  ( ph -> S e. CRing )
7 evls1scafv.r
 |-  ( ph -> R e. ( SubRing ` S ) )
8 evls1scafv.x
 |-  ( ph -> X e. R )
9 evls1scafv.1
 |-  ( ph -> C e. B )
10 1 2 3 4 5 6 7 8 evls1sca
 |-  ( ph -> ( Q ` ( A ` X ) ) = ( B X. { X } ) )
11 10 fveq1d
 |-  ( ph -> ( ( Q ` ( A ` X ) ) ` C ) = ( ( B X. { X } ) ` C ) )
12 fvconst2g
 |-  ( ( X e. R /\ C e. B ) -> ( ( B X. { X } ) ` C ) = X )
13 8 9 12 syl2anc
 |-  ( ph -> ( ( B X. { X } ) ` C ) = X )
14 11 13 eqtrd
 |-  ( ph -> ( ( Q ` ( A ` X ) ) ` C ) = X )