Description: Value of the univariate polynomial evaluation for scalars. (Contributed by Thierry Arnoux, 21-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | evls1scafv.q | |- Q = ( S evalSub1 R ) |
|
evls1scafv.w | |- W = ( Poly1 ` U ) |
||
evls1scafv.u | |- U = ( S |`s R ) |
||
evls1scafv.b | |- B = ( Base ` S ) |
||
evls1scafv.a | |- A = ( algSc ` W ) |
||
evls1scafv.s | |- ( ph -> S e. CRing ) |
||
evls1scafv.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
evls1scafv.x | |- ( ph -> X e. R ) |
||
evls1scafv.1 | |- ( ph -> C e. B ) |
||
Assertion | evls1scafv | |- ( ph -> ( ( Q ` ( A ` X ) ) ` C ) = X ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evls1scafv.q | |- Q = ( S evalSub1 R ) |
|
2 | evls1scafv.w | |- W = ( Poly1 ` U ) |
|
3 | evls1scafv.u | |- U = ( S |`s R ) |
|
4 | evls1scafv.b | |- B = ( Base ` S ) |
|
5 | evls1scafv.a | |- A = ( algSc ` W ) |
|
6 | evls1scafv.s | |- ( ph -> S e. CRing ) |
|
7 | evls1scafv.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
8 | evls1scafv.x | |- ( ph -> X e. R ) |
|
9 | evls1scafv.1 | |- ( ph -> C e. B ) |
|
10 | 1 2 3 4 5 6 7 8 | evls1sca | |- ( ph -> ( Q ` ( A ` X ) ) = ( B X. { X } ) ) |
11 | 10 | fveq1d | |- ( ph -> ( ( Q ` ( A ` X ) ) ` C ) = ( ( B X. { X } ) ` C ) ) |
12 | fvconst2g | |- ( ( X e. R /\ C e. B ) -> ( ( B X. { X } ) ` C ) = X ) |
|
13 | 8 9 12 | syl2anc | |- ( ph -> ( ( B X. { X } ) ` C ) = X ) |
14 | 11 13 | eqtrd | |- ( ph -> ( ( Q ` ( A ` X ) ) ` C ) = X ) |