Step |
Hyp |
Ref |
Expression |
1 |
|
evlsrhm.q |
|- Q = ( ( I evalSub S ) ` R ) |
2 |
|
evlsrhm.w |
|- W = ( I mPoly U ) |
3 |
|
evlsrhm.u |
|- U = ( S |`s R ) |
4 |
|
evlsrhm.t |
|- T = ( S ^s ( B ^m I ) ) |
5 |
|
evlsrhm.b |
|- B = ( Base ` S ) |
6 |
|
eqid |
|- ( I mVar U ) = ( I mVar U ) |
7 |
|
eqid |
|- ( algSc ` W ) = ( algSc ` W ) |
8 |
|
eqid |
|- ( x e. R |-> ( ( B ^m I ) X. { x } ) ) = ( x e. R |-> ( ( B ^m I ) X. { x } ) ) |
9 |
|
eqid |
|- ( x e. I |-> ( y e. ( B ^m I ) |-> ( y ` x ) ) ) = ( x e. I |-> ( y e. ( B ^m I ) |-> ( y ` x ) ) ) |
10 |
1 2 6 3 4 5 7 8 9
|
evlsval2 |
|- ( ( I e. V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> ( Q e. ( W RingHom T ) /\ ( ( Q o. ( algSc ` W ) ) = ( x e. R |-> ( ( B ^m I ) X. { x } ) ) /\ ( Q o. ( I mVar U ) ) = ( x e. I |-> ( y e. ( B ^m I ) |-> ( y ` x ) ) ) ) ) ) |
11 |
10
|
simpld |
|- ( ( I e. V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( W RingHom T ) ) |