Step |
Hyp |
Ref |
Expression |
1 |
|
evlssca.q |
|- Q = ( ( I evalSub S ) ` R ) |
2 |
|
evlssca.w |
|- W = ( I mPoly U ) |
3 |
|
evlssca.u |
|- U = ( S |`s R ) |
4 |
|
evlssca.b |
|- B = ( Base ` S ) |
5 |
|
evlssca.a |
|- A = ( algSc ` W ) |
6 |
|
evlssca.i |
|- ( ph -> I e. V ) |
7 |
|
evlssca.s |
|- ( ph -> S e. CRing ) |
8 |
|
evlssca.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
9 |
|
evlssca.x |
|- ( ph -> X e. R ) |
10 |
|
eqid |
|- ( I mVar U ) = ( I mVar U ) |
11 |
|
eqid |
|- ( S ^s ( B ^m I ) ) = ( S ^s ( B ^m I ) ) |
12 |
|
eqid |
|- ( x e. R |-> ( ( B ^m I ) X. { x } ) ) = ( x e. R |-> ( ( B ^m I ) X. { x } ) ) |
13 |
|
eqid |
|- ( x e. I |-> ( y e. ( B ^m I ) |-> ( y ` x ) ) ) = ( x e. I |-> ( y e. ( B ^m I ) |-> ( y ` x ) ) ) |
14 |
1 2 10 3 11 4 5 12 13
|
evlsval2 |
|- ( ( I e. V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> ( Q e. ( W RingHom ( S ^s ( B ^m I ) ) ) /\ ( ( Q o. A ) = ( x e. R |-> ( ( B ^m I ) X. { x } ) ) /\ ( Q o. ( I mVar U ) ) = ( x e. I |-> ( y e. ( B ^m I ) |-> ( y ` x ) ) ) ) ) ) |
15 |
6 7 8 14
|
syl3anc |
|- ( ph -> ( Q e. ( W RingHom ( S ^s ( B ^m I ) ) ) /\ ( ( Q o. A ) = ( x e. R |-> ( ( B ^m I ) X. { x } ) ) /\ ( Q o. ( I mVar U ) ) = ( x e. I |-> ( y e. ( B ^m I ) |-> ( y ` x ) ) ) ) ) ) |
16 |
15
|
simprld |
|- ( ph -> ( Q o. A ) = ( x e. R |-> ( ( B ^m I ) X. { x } ) ) ) |
17 |
16
|
fveq1d |
|- ( ph -> ( ( Q o. A ) ` X ) = ( ( x e. R |-> ( ( B ^m I ) X. { x } ) ) ` X ) ) |
18 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
19 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
20 |
3
|
subrgring |
|- ( R e. ( SubRing ` S ) -> U e. Ring ) |
21 |
8 20
|
syl |
|- ( ph -> U e. Ring ) |
22 |
2 18 19 5 6 21
|
mplasclf |
|- ( ph -> A : ( Base ` U ) --> ( Base ` W ) ) |
23 |
4
|
subrgss |
|- ( R e. ( SubRing ` S ) -> R C_ B ) |
24 |
3 4
|
ressbas2 |
|- ( R C_ B -> R = ( Base ` U ) ) |
25 |
8 23 24
|
3syl |
|- ( ph -> R = ( Base ` U ) ) |
26 |
25
|
feq2d |
|- ( ph -> ( A : R --> ( Base ` W ) <-> A : ( Base ` U ) --> ( Base ` W ) ) ) |
27 |
22 26
|
mpbird |
|- ( ph -> A : R --> ( Base ` W ) ) |
28 |
|
fvco3 |
|- ( ( A : R --> ( Base ` W ) /\ X e. R ) -> ( ( Q o. A ) ` X ) = ( Q ` ( A ` X ) ) ) |
29 |
27 9 28
|
syl2anc |
|- ( ph -> ( ( Q o. A ) ` X ) = ( Q ` ( A ` X ) ) ) |
30 |
|
sneq |
|- ( x = X -> { x } = { X } ) |
31 |
30
|
xpeq2d |
|- ( x = X -> ( ( B ^m I ) X. { x } ) = ( ( B ^m I ) X. { X } ) ) |
32 |
|
ovex |
|- ( B ^m I ) e. _V |
33 |
|
snex |
|- { X } e. _V |
34 |
32 33
|
xpex |
|- ( ( B ^m I ) X. { X } ) e. _V |
35 |
31 12 34
|
fvmpt |
|- ( X e. R -> ( ( x e. R |-> ( ( B ^m I ) X. { x } ) ) ` X ) = ( ( B ^m I ) X. { X } ) ) |
36 |
9 35
|
syl |
|- ( ph -> ( ( x e. R |-> ( ( B ^m I ) X. { x } ) ) ` X ) = ( ( B ^m I ) X. { X } ) ) |
37 |
17 29 36
|
3eqtr3d |
|- ( ph -> ( Q ` ( A ` X ) ) = ( ( B ^m I ) X. { X } ) ) |