| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlssca.q |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) |
| 2 |
|
evlssca.w |
⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) |
| 3 |
|
evlssca.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
| 4 |
|
evlssca.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 5 |
|
evlssca.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
| 6 |
|
evlssca.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 7 |
|
evlssca.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
| 8 |
|
evlssca.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
| 9 |
|
evlssca.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑅 ) |
| 10 |
|
eqid |
⊢ ( 𝐼 mVar 𝑈 ) = ( 𝐼 mVar 𝑈 ) |
| 11 |
|
eqid |
⊢ ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) = ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) |
| 12 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) |
| 13 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐼 ↦ ( 𝑦 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑦 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑦 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑦 ‘ 𝑥 ) ) ) |
| 14 |
1 2 10 3 11 4 5 12 13
|
evlsval2 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) ) ∧ ( ( 𝑄 ∘ 𝐴 ) = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑄 ∘ ( 𝐼 mVar 𝑈 ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑦 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑦 ‘ 𝑥 ) ) ) ) ) ) |
| 15 |
6 7 8 14
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) ) ∧ ( ( 𝑄 ∘ 𝐴 ) = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑄 ∘ ( 𝐼 mVar 𝑈 ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑦 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑦 ‘ 𝑥 ) ) ) ) ) ) |
| 16 |
15
|
simprld |
⊢ ( 𝜑 → ( 𝑄 ∘ 𝐴 ) = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ) |
| 17 |
16
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑄 ∘ 𝐴 ) ‘ 𝑋 ) = ( ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ‘ 𝑋 ) ) |
| 18 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 19 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 20 |
3
|
subrgring |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring ) |
| 21 |
8 20
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
| 22 |
2 18 19 5 6 21
|
mplasclf |
⊢ ( 𝜑 → 𝐴 : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑊 ) ) |
| 23 |
4
|
subrgss |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐵 ) |
| 24 |
3 4
|
ressbas2 |
⊢ ( 𝑅 ⊆ 𝐵 → 𝑅 = ( Base ‘ 𝑈 ) ) |
| 25 |
8 23 24
|
3syl |
⊢ ( 𝜑 → 𝑅 = ( Base ‘ 𝑈 ) ) |
| 26 |
25
|
feq2d |
⊢ ( 𝜑 → ( 𝐴 : 𝑅 ⟶ ( Base ‘ 𝑊 ) ↔ 𝐴 : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑊 ) ) ) |
| 27 |
22 26
|
mpbird |
⊢ ( 𝜑 → 𝐴 : 𝑅 ⟶ ( Base ‘ 𝑊 ) ) |
| 28 |
|
fvco3 |
⊢ ( ( 𝐴 : 𝑅 ⟶ ( Base ‘ 𝑊 ) ∧ 𝑋 ∈ 𝑅 ) → ( ( 𝑄 ∘ 𝐴 ) ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) ) |
| 29 |
27 9 28
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑄 ∘ 𝐴 ) ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) ) |
| 30 |
|
sneq |
⊢ ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } ) |
| 31 |
30
|
xpeq2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) = ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ) |
| 32 |
|
ovex |
⊢ ( 𝐵 ↑m 𝐼 ) ∈ V |
| 33 |
|
snex |
⊢ { 𝑋 } ∈ V |
| 34 |
32 33
|
xpex |
⊢ ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ∈ V |
| 35 |
31 12 34
|
fvmpt |
⊢ ( 𝑋 ∈ 𝑅 → ( ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ‘ 𝑋 ) = ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ) |
| 36 |
9 35
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ‘ 𝑋 ) = ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ) |
| 37 |
17 29 36
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ) |