Metamath Proof Explorer


Theorem evlssca

Description: Polynomial evaluation maps scalars to constant functions. (Contributed by Stefan O'Rear, 13-Mar-2015) (Proof shortened by AV, 18-Sep-2021)

Ref Expression
Hypotheses evlssca.q 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 )
evlssca.w 𝑊 = ( 𝐼 mPoly 𝑈 )
evlssca.u 𝑈 = ( 𝑆s 𝑅 )
evlssca.b 𝐵 = ( Base ‘ 𝑆 )
evlssca.a 𝐴 = ( algSc ‘ 𝑊 )
evlssca.i ( 𝜑𝐼𝑉 )
evlssca.s ( 𝜑𝑆 ∈ CRing )
evlssca.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
evlssca.x ( 𝜑𝑋𝑅 )
Assertion evlssca ( 𝜑 → ( 𝑄 ‘ ( 𝐴𝑋 ) ) = ( ( 𝐵m 𝐼 ) × { 𝑋 } ) )

Proof

Step Hyp Ref Expression
1 evlssca.q 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 )
2 evlssca.w 𝑊 = ( 𝐼 mPoly 𝑈 )
3 evlssca.u 𝑈 = ( 𝑆s 𝑅 )
4 evlssca.b 𝐵 = ( Base ‘ 𝑆 )
5 evlssca.a 𝐴 = ( algSc ‘ 𝑊 )
6 evlssca.i ( 𝜑𝐼𝑉 )
7 evlssca.s ( 𝜑𝑆 ∈ CRing )
8 evlssca.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
9 evlssca.x ( 𝜑𝑋𝑅 )
10 eqid ( 𝐼 mVar 𝑈 ) = ( 𝐼 mVar 𝑈 )
11 eqid ( 𝑆s ( 𝐵m 𝐼 ) ) = ( 𝑆s ( 𝐵m 𝐼 ) )
12 eqid ( 𝑥𝑅 ↦ ( ( 𝐵m 𝐼 ) × { 𝑥 } ) ) = ( 𝑥𝑅 ↦ ( ( 𝐵m 𝐼 ) × { 𝑥 } ) )
13 eqid ( 𝑥𝐼 ↦ ( 𝑦 ∈ ( 𝐵m 𝐼 ) ↦ ( 𝑦𝑥 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑦 ∈ ( 𝐵m 𝐼 ) ↦ ( 𝑦𝑥 ) ) )
14 1 2 10 3 11 4 5 12 13 evlsval2 ( ( 𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑄 ∈ ( 𝑊 RingHom ( 𝑆s ( 𝐵m 𝐼 ) ) ) ∧ ( ( 𝑄𝐴 ) = ( 𝑥𝑅 ↦ ( ( 𝐵m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑄 ∘ ( 𝐼 mVar 𝑈 ) ) = ( 𝑥𝐼 ↦ ( 𝑦 ∈ ( 𝐵m 𝐼 ) ↦ ( 𝑦𝑥 ) ) ) ) ) )
15 6 7 8 14 syl3anc ( 𝜑 → ( 𝑄 ∈ ( 𝑊 RingHom ( 𝑆s ( 𝐵m 𝐼 ) ) ) ∧ ( ( 𝑄𝐴 ) = ( 𝑥𝑅 ↦ ( ( 𝐵m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑄 ∘ ( 𝐼 mVar 𝑈 ) ) = ( 𝑥𝐼 ↦ ( 𝑦 ∈ ( 𝐵m 𝐼 ) ↦ ( 𝑦𝑥 ) ) ) ) ) )
16 15 simprld ( 𝜑 → ( 𝑄𝐴 ) = ( 𝑥𝑅 ↦ ( ( 𝐵m 𝐼 ) × { 𝑥 } ) ) )
17 16 fveq1d ( 𝜑 → ( ( 𝑄𝐴 ) ‘ 𝑋 ) = ( ( 𝑥𝑅 ↦ ( ( 𝐵m 𝐼 ) × { 𝑥 } ) ) ‘ 𝑋 ) )
18 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
19 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
20 3 subrgring ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring )
21 8 20 syl ( 𝜑𝑈 ∈ Ring )
22 2 18 19 5 6 21 mplasclf ( 𝜑𝐴 : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑊 ) )
23 4 subrgss ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅𝐵 )
24 3 4 ressbas2 ( 𝑅𝐵𝑅 = ( Base ‘ 𝑈 ) )
25 8 23 24 3syl ( 𝜑𝑅 = ( Base ‘ 𝑈 ) )
26 25 feq2d ( 𝜑 → ( 𝐴 : 𝑅 ⟶ ( Base ‘ 𝑊 ) ↔ 𝐴 : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑊 ) ) )
27 22 26 mpbird ( 𝜑𝐴 : 𝑅 ⟶ ( Base ‘ 𝑊 ) )
28 fvco3 ( ( 𝐴 : 𝑅 ⟶ ( Base ‘ 𝑊 ) ∧ 𝑋𝑅 ) → ( ( 𝑄𝐴 ) ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝐴𝑋 ) ) )
29 27 9 28 syl2anc ( 𝜑 → ( ( 𝑄𝐴 ) ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝐴𝑋 ) ) )
30 sneq ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } )
31 30 xpeq2d ( 𝑥 = 𝑋 → ( ( 𝐵m 𝐼 ) × { 𝑥 } ) = ( ( 𝐵m 𝐼 ) × { 𝑋 } ) )
32 ovex ( 𝐵m 𝐼 ) ∈ V
33 snex { 𝑋 } ∈ V
34 32 33 xpex ( ( 𝐵m 𝐼 ) × { 𝑋 } ) ∈ V
35 31 12 34 fvmpt ( 𝑋𝑅 → ( ( 𝑥𝑅 ↦ ( ( 𝐵m 𝐼 ) × { 𝑥 } ) ) ‘ 𝑋 ) = ( ( 𝐵m 𝐼 ) × { 𝑋 } ) )
36 9 35 syl ( 𝜑 → ( ( 𝑥𝑅 ↦ ( ( 𝐵m 𝐼 ) × { 𝑥 } ) ) ‘ 𝑋 ) = ( ( 𝐵m 𝐼 ) × { 𝑋 } ) )
37 17 29 36 3eqtr3d ( 𝜑 → ( 𝑄 ‘ ( 𝐴𝑋 ) ) = ( ( 𝐵m 𝐼 ) × { 𝑋 } ) )