Metamath Proof Explorer


Theorem evlsvar

Description: Polynomial evaluation maps variables to projections. (Contributed by Stefan O'Rear, 12-Mar-2015) (Proof shortened by AV, 18-Sep-2021)

Ref Expression
Hypotheses evlsvar.q 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 )
evlsvar.v 𝑉 = ( 𝐼 mVar 𝑈 )
evlsvar.u 𝑈 = ( 𝑆s 𝑅 )
evlsvar.b 𝐵 = ( Base ‘ 𝑆 )
evlsvar.i ( 𝜑𝐼𝑊 )
evlsvar.s ( 𝜑𝑆 ∈ CRing )
evlsvar.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
evlsvar.x ( 𝜑𝑋𝐼 )
Assertion evlsvar ( 𝜑 → ( 𝑄 ‘ ( 𝑉𝑋 ) ) = ( 𝑔 ∈ ( 𝐵m 𝐼 ) ↦ ( 𝑔𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 evlsvar.q 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 )
2 evlsvar.v 𝑉 = ( 𝐼 mVar 𝑈 )
3 evlsvar.u 𝑈 = ( 𝑆s 𝑅 )
4 evlsvar.b 𝐵 = ( Base ‘ 𝑆 )
5 evlsvar.i ( 𝜑𝐼𝑊 )
6 evlsvar.s ( 𝜑𝑆 ∈ CRing )
7 evlsvar.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
8 evlsvar.x ( 𝜑𝑋𝐼 )
9 eqid ( 𝐼 mPoly 𝑈 ) = ( 𝐼 mPoly 𝑈 )
10 eqid ( 𝑆s ( 𝐵m 𝐼 ) ) = ( 𝑆s ( 𝐵m 𝐼 ) )
11 eqid ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) = ( algSc ‘ ( 𝐼 mPoly 𝑈 ) )
12 eqid ( 𝑥𝑅 ↦ ( ( 𝐵m 𝐼 ) × { 𝑥 } ) ) = ( 𝑥𝑅 ↦ ( ( 𝐵m 𝐼 ) × { 𝑥 } ) )
13 eqid ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( 𝐵m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( 𝐵m 𝐼 ) ↦ ( 𝑔𝑥 ) ) )
14 1 9 2 3 10 4 11 12 13 evlsval2 ( ( 𝐼𝑊𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑄 ∈ ( ( 𝐼 mPoly 𝑈 ) RingHom ( 𝑆s ( 𝐵m 𝐼 ) ) ) ∧ ( ( 𝑄 ∘ ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ) = ( 𝑥𝑅 ↦ ( ( 𝐵m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑄𝑉 ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( 𝐵m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) )
15 5 6 7 14 syl3anc ( 𝜑 → ( 𝑄 ∈ ( ( 𝐼 mPoly 𝑈 ) RingHom ( 𝑆s ( 𝐵m 𝐼 ) ) ) ∧ ( ( 𝑄 ∘ ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ) = ( 𝑥𝑅 ↦ ( ( 𝐵m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑄𝑉 ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( 𝐵m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) )
16 15 simprrd ( 𝜑 → ( 𝑄𝑉 ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( 𝐵m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) )
17 16 fveq1d ( 𝜑 → ( ( 𝑄𝑉 ) ‘ 𝑋 ) = ( ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( 𝐵m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ‘ 𝑋 ) )
18 eqid ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑈 ) )
19 3 subrgring ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring )
20 7 19 syl ( 𝜑𝑈 ∈ Ring )
21 9 2 18 5 20 mvrf2 ( 𝜑𝑉 : 𝐼 ⟶ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) )
22 21 ffnd ( 𝜑𝑉 Fn 𝐼 )
23 fvco2 ( ( 𝑉 Fn 𝐼𝑋𝐼 ) → ( ( 𝑄𝑉 ) ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑉𝑋 ) ) )
24 22 8 23 syl2anc ( 𝜑 → ( ( 𝑄𝑉 ) ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑉𝑋 ) ) )
25 fveq2 ( 𝑥 = 𝑋 → ( 𝑔𝑥 ) = ( 𝑔𝑋 ) )
26 25 mpteq2dv ( 𝑥 = 𝑋 → ( 𝑔 ∈ ( 𝐵m 𝐼 ) ↦ ( 𝑔𝑥 ) ) = ( 𝑔 ∈ ( 𝐵m 𝐼 ) ↦ ( 𝑔𝑋 ) ) )
27 ovex ( 𝐵m 𝐼 ) ∈ V
28 27 mptex ( 𝑔 ∈ ( 𝐵m 𝐼 ) ↦ ( 𝑔𝑋 ) ) ∈ V
29 26 13 28 fvmpt ( 𝑋𝐼 → ( ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( 𝐵m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ‘ 𝑋 ) = ( 𝑔 ∈ ( 𝐵m 𝐼 ) ↦ ( 𝑔𝑋 ) ) )
30 8 29 syl ( 𝜑 → ( ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( 𝐵m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ‘ 𝑋 ) = ( 𝑔 ∈ ( 𝐵m 𝐼 ) ↦ ( 𝑔𝑋 ) ) )
31 17 24 30 3eqtr3d ( 𝜑 → ( 𝑄 ‘ ( 𝑉𝑋 ) ) = ( 𝑔 ∈ ( 𝐵m 𝐼 ) ↦ ( 𝑔𝑋 ) ) )