Metamath Proof Explorer


Theorem evlsvar

Description: Polynomial evaluation maps variables to projections. (Contributed by Stefan O'Rear, 12-Mar-2015) (Proof shortened by AV, 18-Sep-2021)

Ref Expression
Hypotheses evlsvar.q Q = I evalSub S R
evlsvar.v V = I mVar U
evlsvar.u U = S 𝑠 R
evlsvar.b B = Base S
evlsvar.i φ I W
evlsvar.s φ S CRing
evlsvar.r φ R SubRing S
evlsvar.x φ X I
Assertion evlsvar φ Q V X = g B I g X

Proof

Step Hyp Ref Expression
1 evlsvar.q Q = I evalSub S R
2 evlsvar.v V = I mVar U
3 evlsvar.u U = S 𝑠 R
4 evlsvar.b B = Base S
5 evlsvar.i φ I W
6 evlsvar.s φ S CRing
7 evlsvar.r φ R SubRing S
8 evlsvar.x φ X I
9 eqid I mPoly U = I mPoly U
10 eqid S 𝑠 B I = S 𝑠 B I
11 eqid algSc I mPoly U = algSc I mPoly U
12 eqid x R B I × x = x R B I × x
13 eqid x I g B I g x = x I g B I g x
14 1 9 2 3 10 4 11 12 13 evlsval2 I W S CRing R SubRing S Q I mPoly U RingHom S 𝑠 B I Q algSc I mPoly U = x R B I × x Q V = x I g B I g x
15 5 6 7 14 syl3anc φ Q I mPoly U RingHom S 𝑠 B I Q algSc I mPoly U = x R B I × x Q V = x I g B I g x
16 15 simprrd φ Q V = x I g B I g x
17 16 fveq1d φ Q V X = x I g B I g x X
18 eqid Base I mPoly U = Base I mPoly U
19 3 subrgring R SubRing S U Ring
20 7 19 syl φ U Ring
21 9 2 18 5 20 mvrf2 φ V : I Base I mPoly U
22 21 ffnd φ V Fn I
23 fvco2 V Fn I X I Q V X = Q V X
24 22 8 23 syl2anc φ Q V X = Q V X
25 fveq2 x = X g x = g X
26 25 mpteq2dv x = X g B I g x = g B I g X
27 ovex B I V
28 27 mptex g B I g X V
29 26 13 28 fvmpt X I x I g B I g x X = g B I g X
30 8 29 syl φ x I g B I g x X = g B I g X
31 17 24 30 3eqtr3d φ Q V X = g B I g X