Metamath Proof Explorer


Definition df-evls

Description: Define the evaluation map for the polynomial algebra. The function ( ( I evalSub S )R ) : V --> ( S ^m ( S ^m I ) ) makes sense when I is an index set, S is a ring, R is a subring of S , and where V is the set of polynomials in ( I mPoly R ) . This function maps an element of the formal polynomial algebra (with coefficients in R ) to a function from assignments I --> S of the variables to elements of S formed by evaluating the polynomial with the given assignments. (Contributed by Stefan O'Rear, 11-Mar-2015)

Ref Expression
Assertion df-evls evalSub=iV,sCRingBases/brSubRingsimPolys𝑠r/wιfwRingHoms𝑠bi|falgScw=xrbi×xfimVars𝑠r=xigbigx

Detailed syntax breakdown

Step Hyp Ref Expression
0 ces classevalSub
1 vi setvari
2 cvv classV
3 vs setvars
4 ccrg classCRing
5 cbs classBase
6 3 cv setvars
7 6 5 cfv classBases
8 vb setvarb
9 vr setvarr
10 csubrg classSubRing
11 6 10 cfv classSubRings
12 1 cv setvari
13 cmpl classmPoly
14 cress class𝑠
15 9 cv setvarr
16 6 15 14 co classs𝑠r
17 12 16 13 co classimPolys𝑠r
18 vw setvarw
19 vf setvarf
20 18 cv setvarw
21 crh classRingHom
22 cpws class𝑠
23 8 cv setvarb
24 cmap class𝑚
25 23 12 24 co classbi
26 6 25 22 co classs𝑠bi
27 20 26 21 co classwRingHoms𝑠bi
28 19 cv setvarf
29 cascl classalgSc
30 20 29 cfv classalgScw
31 28 30 ccom classfalgScw
32 vx setvarx
33 32 cv setvarx
34 33 csn classx
35 25 34 cxp classbi×x
36 32 15 35 cmpt classxrbi×x
37 31 36 wceq wfffalgScw=xrbi×x
38 cmvr classmVar
39 12 16 38 co classimVars𝑠r
40 28 39 ccom classfimVars𝑠r
41 vg setvarg
42 41 cv setvarg
43 33 42 cfv classgx
44 41 25 43 cmpt classgbigx
45 32 12 44 cmpt classxigbigx
46 40 45 wceq wfffimVars𝑠r=xigbigx
47 37 46 wa wfffalgScw=xrbi×xfimVars𝑠r=xigbigx
48 47 19 27 crio classιfwRingHoms𝑠bi|falgScw=xrbi×xfimVars𝑠r=xigbigx
49 18 17 48 csb classimPolys𝑠r/wιfwRingHoms𝑠bi|falgScw=xrbi×xfimVars𝑠r=xigbigx
50 9 11 49 cmpt classrSubRingsimPolys𝑠r/wιfwRingHoms𝑠bi|falgScw=xrbi×xfimVars𝑠r=xigbigx
51 8 7 50 csb classBases/brSubRingsimPolys𝑠r/wιfwRingHoms𝑠bi|falgScw=xrbi×xfimVars𝑠r=xigbigx
52 1 3 2 4 51 cmpo classiV,sCRingBases/brSubRingsimPolys𝑠r/wιfwRingHoms𝑠bi|falgScw=xrbi×xfimVars𝑠r=xigbigx
53 0 52 wceq wffevalSub=iV,sCRingBases/brSubRingsimPolys𝑠r/wιfwRingHoms𝑠bi|falgScw=xrbi×xfimVars𝑠r=xigbigx