Description: Define the evaluation map for the polynomial algebra. The function ( ( I evalSub S )R ) : V --> ( S ^m ( S ^m I ) ) makes sense when I is an index set, S is a ring, R is a subring of S , and where V is the set of polynomials in ( I mPoly R ) . This function maps an element of the formal polynomial algebra (with coefficients in R ) to a function from assignments I --> S of the variables to elements of S formed by evaluating the polynomial with the given assignments. (Contributed by Stefan O'Rear, 11-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-evls | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ces | |
|
1 | vi | |
|
2 | cvv | |
|
3 | vs | |
|
4 | ccrg | |
|
5 | cbs | |
|
6 | 3 | cv | |
7 | 6 5 | cfv | |
8 | vb | |
|
9 | vr | |
|
10 | csubrg | |
|
11 | 6 10 | cfv | |
12 | 1 | cv | |
13 | cmpl | |
|
14 | cress | |
|
15 | 9 | cv | |
16 | 6 15 14 | co | |
17 | 12 16 13 | co | |
18 | vw | |
|
19 | vf | |
|
20 | 18 | cv | |
21 | crh | |
|
22 | cpws | |
|
23 | 8 | cv | |
24 | cmap | |
|
25 | 23 12 24 | co | |
26 | 6 25 22 | co | |
27 | 20 26 21 | co | |
28 | 19 | cv | |
29 | cascl | |
|
30 | 20 29 | cfv | |
31 | 28 30 | ccom | |
32 | vx | |
|
33 | 32 | cv | |
34 | 33 | csn | |
35 | 25 34 | cxp | |
36 | 32 15 35 | cmpt | |
37 | 31 36 | wceq | |
38 | cmvr | |
|
39 | 12 16 38 | co | |
40 | 28 39 | ccom | |
41 | vg | |
|
42 | 41 | cv | |
43 | 33 42 | cfv | |
44 | 41 25 43 | cmpt | |
45 | 32 12 44 | cmpt | |
46 | 40 45 | wceq | |
47 | 37 46 | wa | |
48 | 47 19 27 | crio | |
49 | 18 17 48 | csb | |
50 | 9 11 49 | cmpt | |
51 | 8 7 50 | csb | |
52 | 1 3 2 4 51 | cmpo | |
53 | 0 52 | wceq | |