Metamath Proof Explorer


Theorem mvrf2

Description: The power series/polynomial variable function maps indices to polynomials. (Contributed by Stefan O'Rear, 8-Mar-2015)

Ref Expression
Hypotheses mvrf2.p P=ImPolyR
mvrf2.v V=ImVarR
mvrf2.b B=BaseP
mvrf2.i φIW
mvrf2.r φRRing
Assertion mvrf2 φV:IB

Proof

Step Hyp Ref Expression
1 mvrf2.p P=ImPolyR
2 mvrf2.v V=ImVarR
3 mvrf2.b B=BaseP
4 mvrf2.i φIW
5 mvrf2.r φRRing
6 eqid ImPwSerR=ImPwSerR
7 eqid BaseImPwSerR=BaseImPwSerR
8 6 2 7 4 5 mvrf φV:IBaseImPwSerR
9 8 ffnd φVFnI
10 4 adantr φxIIW
11 5 adantr φxIRRing
12 simpr φxIxI
13 1 2 3 10 11 12 mvrcl φxIVxB
14 13 ralrimiva φxIVxB
15 ffnfv V:IBVFnIxIVxB
16 9 14 15 sylanbrc φV:IB