| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mvrf2.p |
|- P = ( I mPoly R ) |
| 2 |
|
mvrf2.v |
|- V = ( I mVar R ) |
| 3 |
|
mvrf2.b |
|- B = ( Base ` P ) |
| 4 |
|
mvrf2.i |
|- ( ph -> I e. W ) |
| 5 |
|
mvrf2.r |
|- ( ph -> R e. Ring ) |
| 6 |
|
eqid |
|- ( I mPwSer R ) = ( I mPwSer R ) |
| 7 |
|
eqid |
|- ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) |
| 8 |
6 2 7 4 5
|
mvrf |
|- ( ph -> V : I --> ( Base ` ( I mPwSer R ) ) ) |
| 9 |
8
|
ffnd |
|- ( ph -> V Fn I ) |
| 10 |
4
|
adantr |
|- ( ( ph /\ x e. I ) -> I e. W ) |
| 11 |
5
|
adantr |
|- ( ( ph /\ x e. I ) -> R e. Ring ) |
| 12 |
|
simpr |
|- ( ( ph /\ x e. I ) -> x e. I ) |
| 13 |
1 2 3 10 11 12
|
mvrcl |
|- ( ( ph /\ x e. I ) -> ( V ` x ) e. B ) |
| 14 |
13
|
ralrimiva |
|- ( ph -> A. x e. I ( V ` x ) e. B ) |
| 15 |
|
ffnfv |
|- ( V : I --> B <-> ( V Fn I /\ A. x e. I ( V ` x ) e. B ) ) |
| 16 |
9 14 15
|
sylanbrc |
|- ( ph -> V : I --> B ) |