Step |
Hyp |
Ref |
Expression |
1 |
|
mplmon2.p |
|- P = ( I mPoly R ) |
2 |
|
mplmon2.v |
|- .x. = ( .s ` P ) |
3 |
|
mplmon2.d |
|- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
4 |
|
mplmon2.o |
|- .1. = ( 1r ` R ) |
5 |
|
mplmon2.z |
|- .0. = ( 0g ` R ) |
6 |
|
mplmon2.b |
|- B = ( Base ` R ) |
7 |
|
mplmon2.i |
|- ( ph -> I e. W ) |
8 |
|
mplmon2.r |
|- ( ph -> R e. Ring ) |
9 |
|
mplmon2.k |
|- ( ph -> K e. D ) |
10 |
|
mplmon2.x |
|- ( ph -> X e. B ) |
11 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
12 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
13 |
1 11 5 4 3 7 8 9
|
mplmon |
|- ( ph -> ( y e. D |-> if ( y = K , .1. , .0. ) ) e. ( Base ` P ) ) |
14 |
1 2 6 11 12 3 10 13
|
mplvsca |
|- ( ph -> ( X .x. ( y e. D |-> if ( y = K , .1. , .0. ) ) ) = ( ( D X. { X } ) oF ( .r ` R ) ( y e. D |-> if ( y = K , .1. , .0. ) ) ) ) |
15 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
16 |
3 15
|
rabex2 |
|- D e. _V |
17 |
16
|
a1i |
|- ( ph -> D e. _V ) |
18 |
10
|
adantr |
|- ( ( ph /\ y e. D ) -> X e. B ) |
19 |
4
|
fvexi |
|- .1. e. _V |
20 |
5
|
fvexi |
|- .0. e. _V |
21 |
19 20
|
ifex |
|- if ( y = K , .1. , .0. ) e. _V |
22 |
21
|
a1i |
|- ( ( ph /\ y e. D ) -> if ( y = K , .1. , .0. ) e. _V ) |
23 |
|
fconstmpt |
|- ( D X. { X } ) = ( y e. D |-> X ) |
24 |
23
|
a1i |
|- ( ph -> ( D X. { X } ) = ( y e. D |-> X ) ) |
25 |
|
eqidd |
|- ( ph -> ( y e. D |-> if ( y = K , .1. , .0. ) ) = ( y e. D |-> if ( y = K , .1. , .0. ) ) ) |
26 |
17 18 22 24 25
|
offval2 |
|- ( ph -> ( ( D X. { X } ) oF ( .r ` R ) ( y e. D |-> if ( y = K , .1. , .0. ) ) ) = ( y e. D |-> ( X ( .r ` R ) if ( y = K , .1. , .0. ) ) ) ) |
27 |
|
oveq2 |
|- ( .1. = if ( y = K , .1. , .0. ) -> ( X ( .r ` R ) .1. ) = ( X ( .r ` R ) if ( y = K , .1. , .0. ) ) ) |
28 |
27
|
eqeq1d |
|- ( .1. = if ( y = K , .1. , .0. ) -> ( ( X ( .r ` R ) .1. ) = if ( y = K , X , .0. ) <-> ( X ( .r ` R ) if ( y = K , .1. , .0. ) ) = if ( y = K , X , .0. ) ) ) |
29 |
|
oveq2 |
|- ( .0. = if ( y = K , .1. , .0. ) -> ( X ( .r ` R ) .0. ) = ( X ( .r ` R ) if ( y = K , .1. , .0. ) ) ) |
30 |
29
|
eqeq1d |
|- ( .0. = if ( y = K , .1. , .0. ) -> ( ( X ( .r ` R ) .0. ) = if ( y = K , X , .0. ) <-> ( X ( .r ` R ) if ( y = K , .1. , .0. ) ) = if ( y = K , X , .0. ) ) ) |
31 |
6 12 4
|
ringridm |
|- ( ( R e. Ring /\ X e. B ) -> ( X ( .r ` R ) .1. ) = X ) |
32 |
8 10 31
|
syl2anc |
|- ( ph -> ( X ( .r ` R ) .1. ) = X ) |
33 |
|
iftrue |
|- ( y = K -> if ( y = K , X , .0. ) = X ) |
34 |
33
|
eqcomd |
|- ( y = K -> X = if ( y = K , X , .0. ) ) |
35 |
32 34
|
sylan9eq |
|- ( ( ph /\ y = K ) -> ( X ( .r ` R ) .1. ) = if ( y = K , X , .0. ) ) |
36 |
6 12 5
|
ringrz |
|- ( ( R e. Ring /\ X e. B ) -> ( X ( .r ` R ) .0. ) = .0. ) |
37 |
8 10 36
|
syl2anc |
|- ( ph -> ( X ( .r ` R ) .0. ) = .0. ) |
38 |
|
iffalse |
|- ( -. y = K -> if ( y = K , X , .0. ) = .0. ) |
39 |
38
|
eqcomd |
|- ( -. y = K -> .0. = if ( y = K , X , .0. ) ) |
40 |
37 39
|
sylan9eq |
|- ( ( ph /\ -. y = K ) -> ( X ( .r ` R ) .0. ) = if ( y = K , X , .0. ) ) |
41 |
28 30 35 40
|
ifbothda |
|- ( ph -> ( X ( .r ` R ) if ( y = K , .1. , .0. ) ) = if ( y = K , X , .0. ) ) |
42 |
41
|
mpteq2dv |
|- ( ph -> ( y e. D |-> ( X ( .r ` R ) if ( y = K , .1. , .0. ) ) ) = ( y e. D |-> if ( y = K , X , .0. ) ) ) |
43 |
14 26 42
|
3eqtrd |
|- ( ph -> ( X .x. ( y e. D |-> if ( y = K , .1. , .0. ) ) ) = ( y e. D |-> if ( y = K , X , .0. ) ) ) |