Step |
Hyp |
Ref |
Expression |
1 |
|
psrbag0.d |
|- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
2 |
|
0nn0 |
|- 0 e. NN0 |
3 |
2
|
fconst6 |
|- ( I X. { 0 } ) : I --> NN0 |
4 |
|
c0ex |
|- 0 e. _V |
5 |
4
|
fconst |
|- ( I X. { 0 } ) : I --> { 0 } |
6 |
|
incom |
|- ( { 0 } i^i NN ) = ( NN i^i { 0 } ) |
7 |
|
0nnn |
|- -. 0 e. NN |
8 |
|
disjsn |
|- ( ( NN i^i { 0 } ) = (/) <-> -. 0 e. NN ) |
9 |
7 8
|
mpbir |
|- ( NN i^i { 0 } ) = (/) |
10 |
6 9
|
eqtri |
|- ( { 0 } i^i NN ) = (/) |
11 |
|
fimacnvdisj |
|- ( ( ( I X. { 0 } ) : I --> { 0 } /\ ( { 0 } i^i NN ) = (/) ) -> ( `' ( I X. { 0 } ) " NN ) = (/) ) |
12 |
5 10 11
|
mp2an |
|- ( `' ( I X. { 0 } ) " NN ) = (/) |
13 |
|
0fin |
|- (/) e. Fin |
14 |
12 13
|
eqeltri |
|- ( `' ( I X. { 0 } ) " NN ) e. Fin |
15 |
3 14
|
pm3.2i |
|- ( ( I X. { 0 } ) : I --> NN0 /\ ( `' ( I X. { 0 } ) " NN ) e. Fin ) |
16 |
1
|
psrbag |
|- ( I e. V -> ( ( I X. { 0 } ) e. D <-> ( ( I X. { 0 } ) : I --> NN0 /\ ( `' ( I X. { 0 } ) " NN ) e. Fin ) ) ) |
17 |
15 16
|
mpbiri |
|- ( I e. V -> ( I X. { 0 } ) e. D ) |