Metamath Proof Explorer


Theorem psrbag0

Description: The empty bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015)

Ref Expression
Hypothesis psrbag0.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
Assertion psrbag0 ( 𝐼𝑉 → ( 𝐼 × { 0 } ) ∈ 𝐷 )

Proof

Step Hyp Ref Expression
1 psrbag0.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
2 0nn0 0 ∈ ℕ0
3 2 fconst6 ( 𝐼 × { 0 } ) : 𝐼 ⟶ ℕ0
4 c0ex 0 ∈ V
5 4 fconst ( 𝐼 × { 0 } ) : 𝐼 ⟶ { 0 }
6 incom ( { 0 } ∩ ℕ ) = ( ℕ ∩ { 0 } )
7 0nnn ¬ 0 ∈ ℕ
8 disjsn ( ( ℕ ∩ { 0 } ) = ∅ ↔ ¬ 0 ∈ ℕ )
9 7 8 mpbir ( ℕ ∩ { 0 } ) = ∅
10 6 9 eqtri ( { 0 } ∩ ℕ ) = ∅
11 fimacnvdisj ( ( ( 𝐼 × { 0 } ) : 𝐼 ⟶ { 0 } ∧ ( { 0 } ∩ ℕ ) = ∅ ) → ( ( 𝐼 × { 0 } ) “ ℕ ) = ∅ )
12 5 10 11 mp2an ( ( 𝐼 × { 0 } ) “ ℕ ) = ∅
13 0fin ∅ ∈ Fin
14 12 13 eqeltri ( ( 𝐼 × { 0 } ) “ ℕ ) ∈ Fin
15 3 14 pm3.2i ( ( 𝐼 × { 0 } ) : 𝐼 ⟶ ℕ0 ∧ ( ( 𝐼 × { 0 } ) “ ℕ ) ∈ Fin )
16 1 psrbag ( 𝐼𝑉 → ( ( 𝐼 × { 0 } ) ∈ 𝐷 ↔ ( ( 𝐼 × { 0 } ) : 𝐼 ⟶ ℕ0 ∧ ( ( 𝐼 × { 0 } ) “ ℕ ) ∈ Fin ) ) )
17 15 16 mpbiri ( 𝐼𝑉 → ( 𝐼 × { 0 } ) ∈ 𝐷 )