Step |
Hyp |
Ref |
Expression |
1 |
|
psrbag.d |
|- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
2 |
|
cnveq |
|- ( f = F -> `' f = `' F ) |
3 |
2
|
imaeq1d |
|- ( f = F -> ( `' f " NN ) = ( `' F " NN ) ) |
4 |
3
|
eleq1d |
|- ( f = F -> ( ( `' f " NN ) e. Fin <-> ( `' F " NN ) e. Fin ) ) |
5 |
4 1
|
elrab2 |
|- ( F e. D <-> ( F e. ( NN0 ^m I ) /\ ( `' F " NN ) e. Fin ) ) |
6 |
|
nn0ex |
|- NN0 e. _V |
7 |
|
elmapg |
|- ( ( NN0 e. _V /\ I e. V ) -> ( F e. ( NN0 ^m I ) <-> F : I --> NN0 ) ) |
8 |
6 7
|
mpan |
|- ( I e. V -> ( F e. ( NN0 ^m I ) <-> F : I --> NN0 ) ) |
9 |
8
|
anbi1d |
|- ( I e. V -> ( ( F e. ( NN0 ^m I ) /\ ( `' F " NN ) e. Fin ) <-> ( F : I --> NN0 /\ ( `' F " NN ) e. Fin ) ) ) |
10 |
5 9
|
syl5bb |
|- ( I e. V -> ( F e. D <-> ( F : I --> NN0 /\ ( `' F " NN ) e. Fin ) ) ) |