Metamath Proof Explorer


Theorem mvrf2

Description: The power series/polynomial variable function maps indices to polynomials. (Contributed by Stefan O'Rear, 8-Mar-2015)

Ref Expression
Hypotheses mvrf2.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mvrf2.v 𝑉 = ( 𝐼 mVar 𝑅 )
mvrf2.b 𝐵 = ( Base ‘ 𝑃 )
mvrf2.i ( 𝜑𝐼𝑊 )
mvrf2.r ( 𝜑𝑅 ∈ Ring )
Assertion mvrf2 ( 𝜑𝑉 : 𝐼𝐵 )

Proof

Step Hyp Ref Expression
1 mvrf2.p 𝑃 = ( 𝐼 mPoly 𝑅 )
2 mvrf2.v 𝑉 = ( 𝐼 mVar 𝑅 )
3 mvrf2.b 𝐵 = ( Base ‘ 𝑃 )
4 mvrf2.i ( 𝜑𝐼𝑊 )
5 mvrf2.r ( 𝜑𝑅 ∈ Ring )
6 eqid ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 )
7 eqid ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) )
8 6 2 7 4 5 mvrf ( 𝜑𝑉 : 𝐼 ⟶ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) )
9 8 ffnd ( 𝜑𝑉 Fn 𝐼 )
10 4 adantr ( ( 𝜑𝑥𝐼 ) → 𝐼𝑊 )
11 5 adantr ( ( 𝜑𝑥𝐼 ) → 𝑅 ∈ Ring )
12 simpr ( ( 𝜑𝑥𝐼 ) → 𝑥𝐼 )
13 1 2 3 10 11 12 mvrcl ( ( 𝜑𝑥𝐼 ) → ( 𝑉𝑥 ) ∈ 𝐵 )
14 13 ralrimiva ( 𝜑 → ∀ 𝑥𝐼 ( 𝑉𝑥 ) ∈ 𝐵 )
15 ffnfv ( 𝑉 : 𝐼𝐵 ↔ ( 𝑉 Fn 𝐼 ∧ ∀ 𝑥𝐼 ( 𝑉𝑥 ) ∈ 𝐵 ) )
16 9 14 15 sylanbrc ( 𝜑𝑉 : 𝐼𝐵 )