Metamath Proof Explorer


Theorem mvrcl

Description: A power series variable is a polynomial. (Contributed by Mario Carneiro, 9-Jan-2015)

Ref Expression
Hypotheses mvrcl.s 𝑃 = ( 𝐼 mPoly 𝑅 )
mvrcl.v 𝑉 = ( 𝐼 mVar 𝑅 )
mvrcl.b 𝐵 = ( Base ‘ 𝑃 )
mvrcl.i ( 𝜑𝐼𝑊 )
mvrcl.r ( 𝜑𝑅 ∈ Ring )
mvrcl.x ( 𝜑𝑋𝐼 )
Assertion mvrcl ( 𝜑 → ( 𝑉𝑋 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 mvrcl.s 𝑃 = ( 𝐼 mPoly 𝑅 )
2 mvrcl.v 𝑉 = ( 𝐼 mVar 𝑅 )
3 mvrcl.b 𝐵 = ( Base ‘ 𝑃 )
4 mvrcl.i ( 𝜑𝐼𝑊 )
5 mvrcl.r ( 𝜑𝑅 ∈ Ring )
6 mvrcl.x ( 𝜑𝑋𝐼 )
7 eqid ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 )
8 eqid ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) )
9 7 2 8 4 5 6 mvrcl2 ( 𝜑 → ( 𝑉𝑋 ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) )
10 fvexd ( 𝜑 → ( 𝑉𝑋 ) ∈ V )
11 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
12 eqid { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
13 7 11 12 8 9 psrelbas ( 𝜑 → ( 𝑉𝑋 ) : { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
14 13 ffund ( 𝜑 → Fun ( 𝑉𝑋 ) )
15 fvexd ( 𝜑 → ( 0g𝑅 ) ∈ V )
16 snfi { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ∈ Fin
17 16 a1i ( 𝜑 → { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ∈ Fin )
18 eqid ( 0g𝑅 ) = ( 0g𝑅 )
19 eqid ( 1r𝑅 ) = ( 1r𝑅 )
20 4 adantr ( ( 𝜑𝑥 ∈ ( { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → 𝐼𝑊 )
21 5 adantr ( ( 𝜑𝑥 ∈ ( { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → 𝑅 ∈ Ring )
22 6 adantr ( ( 𝜑𝑥 ∈ ( { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → 𝑋𝐼 )
23 simpr ( ( 𝜑𝑥 ∈ ( { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → 𝑥 ∈ ( { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) )
24 eldifsn ( 𝑥 ∈ ( { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ↔ ( 𝑥 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑥 ≠ ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
25 23 24 sylib ( ( 𝜑𝑥 ∈ ( { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑥 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑥 ≠ ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
26 25 simpld ( ( 𝜑𝑥 ∈ ( { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → 𝑥 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } )
27 2 12 18 19 20 21 22 26 mvrval2 ( ( 𝜑𝑥 ∈ ( { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( ( 𝑉𝑋 ) ‘ 𝑥 ) = if ( 𝑥 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) )
28 25 simprd ( ( 𝜑𝑥 ∈ ( { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → 𝑥 ≠ ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) )
29 28 neneqd ( ( 𝜑𝑥 ∈ ( { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ¬ 𝑥 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) )
30 29 iffalsed ( ( 𝜑𝑥 ∈ ( { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → if ( 𝑥 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) = ( 0g𝑅 ) )
31 27 30 eqtrd ( ( 𝜑𝑥 ∈ ( { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( ( 𝑉𝑋 ) ‘ 𝑥 ) = ( 0g𝑅 ) )
32 13 31 suppss ( 𝜑 → ( ( 𝑉𝑋 ) supp ( 0g𝑅 ) ) ⊆ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } )
33 suppssfifsupp ( ( ( ( 𝑉𝑋 ) ∈ V ∧ Fun ( 𝑉𝑋 ) ∧ ( 0g𝑅 ) ∈ V ) ∧ ( { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ∈ Fin ∧ ( ( 𝑉𝑋 ) supp ( 0g𝑅 ) ) ⊆ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑉𝑋 ) finSupp ( 0g𝑅 ) )
34 10 14 15 17 32 33 syl32anc ( 𝜑 → ( 𝑉𝑋 ) finSupp ( 0g𝑅 ) )
35 1 7 8 18 3 mplelbas ( ( 𝑉𝑋 ) ∈ 𝐵 ↔ ( ( 𝑉𝑋 ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( 𝑉𝑋 ) finSupp ( 0g𝑅 ) ) )
36 9 34 35 sylanbrc ( 𝜑 → ( 𝑉𝑋 ) ∈ 𝐵 )