Description: Polynomial evaluation for subrings maps the exponentiation of a variable to the exponentiation of the evaluated variable. (Contributed by SN, 21-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsvarpw.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| evlsvarpw.w | |- W = ( I mPoly U ) |
||
| evlsvarpw.g | |- G = ( mulGrp ` W ) |
||
| evlsvarpw.e | |- .^ = ( .g ` G ) |
||
| evlsvarpw.x | |- X = ( ( I mVar U ) ` Y ) |
||
| evlsvarpw.u | |- U = ( S |`s R ) |
||
| evlsvarpw.p | |- P = ( S ^s ( B ^m I ) ) |
||
| evlsvarpw.h | |- H = ( mulGrp ` P ) |
||
| evlsvarpw.b | |- B = ( Base ` S ) |
||
| evlsvarpw.i | |- ( ph -> I e. V ) |
||
| evlsvarpw.y | |- ( ph -> Y e. I ) |
||
| evlsvarpw.s | |- ( ph -> S e. CRing ) |
||
| evlsvarpw.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| evlsvarpw.n | |- ( ph -> N e. NN0 ) |
||
| Assertion | evlsvarpw | |- ( ph -> ( Q ` ( N .^ X ) ) = ( N ( .g ` H ) ( Q ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsvarpw.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| 2 | evlsvarpw.w | |- W = ( I mPoly U ) |
|
| 3 | evlsvarpw.g | |- G = ( mulGrp ` W ) |
|
| 4 | evlsvarpw.e | |- .^ = ( .g ` G ) |
|
| 5 | evlsvarpw.x | |- X = ( ( I mVar U ) ` Y ) |
|
| 6 | evlsvarpw.u | |- U = ( S |`s R ) |
|
| 7 | evlsvarpw.p | |- P = ( S ^s ( B ^m I ) ) |
|
| 8 | evlsvarpw.h | |- H = ( mulGrp ` P ) |
|
| 9 | evlsvarpw.b | |- B = ( Base ` S ) |
|
| 10 | evlsvarpw.i | |- ( ph -> I e. V ) |
|
| 11 | evlsvarpw.y | |- ( ph -> Y e. I ) |
|
| 12 | evlsvarpw.s | |- ( ph -> S e. CRing ) |
|
| 13 | evlsvarpw.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 14 | evlsvarpw.n | |- ( ph -> N e. NN0 ) |
|
| 15 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 16 | eqid | |- ( I mVar U ) = ( I mVar U ) |
|
| 17 | 6 | subrgring | |- ( R e. ( SubRing ` S ) -> U e. Ring ) |
| 18 | 13 17 | syl | |- ( ph -> U e. Ring ) |
| 19 | 2 16 15 10 18 11 | mvrcl | |- ( ph -> ( ( I mVar U ) ` Y ) e. ( Base ` W ) ) |
| 20 | 5 19 | eqeltrid | |- ( ph -> X e. ( Base ` W ) ) |
| 21 | 1 2 3 4 6 7 8 9 15 10 12 13 14 20 | evlspw | |- ( ph -> ( Q ` ( N .^ X ) ) = ( N ( .g ` H ) ( Q ` X ) ) ) |