| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlspw.q |
|- Q = ( ( I evalSub S ) ` R ) |
| 2 |
|
evlspw.w |
|- W = ( I mPoly U ) |
| 3 |
|
evlspw.g |
|- G = ( mulGrp ` W ) |
| 4 |
|
evlspw.e |
|- .^ = ( .g ` G ) |
| 5 |
|
evlspw.u |
|- U = ( S |`s R ) |
| 6 |
|
evlspw.p |
|- P = ( S ^s ( K ^m I ) ) |
| 7 |
|
evlspw.h |
|- H = ( mulGrp ` P ) |
| 8 |
|
evlspw.k |
|- K = ( Base ` S ) |
| 9 |
|
evlspw.b |
|- B = ( Base ` W ) |
| 10 |
|
evlspw.i |
|- ( ph -> I e. V ) |
| 11 |
|
evlspw.s |
|- ( ph -> S e. CRing ) |
| 12 |
|
evlspw.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
| 13 |
|
evlspw.n |
|- ( ph -> N e. NN0 ) |
| 14 |
|
evlspw.x |
|- ( ph -> X e. B ) |
| 15 |
1 2 5 6 8
|
evlsrhm |
|- ( ( I e. V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( W RingHom P ) ) |
| 16 |
10 11 12 15
|
syl3anc |
|- ( ph -> Q e. ( W RingHom P ) ) |
| 17 |
3 7
|
rhmmhm |
|- ( Q e. ( W RingHom P ) -> Q e. ( G MndHom H ) ) |
| 18 |
16 17
|
syl |
|- ( ph -> Q e. ( G MndHom H ) ) |
| 19 |
3 9
|
mgpbas |
|- B = ( Base ` G ) |
| 20 |
|
eqid |
|- ( .g ` H ) = ( .g ` H ) |
| 21 |
19 4 20
|
mhmmulg |
|- ( ( Q e. ( G MndHom H ) /\ N e. NN0 /\ X e. B ) -> ( Q ` ( N .^ X ) ) = ( N ( .g ` H ) ( Q ` X ) ) ) |
| 22 |
18 13 14 21
|
syl3anc |
|- ( ph -> ( Q ` ( N .^ X ) ) = ( N ( .g ` H ) ( Q ` X ) ) ) |