Metamath Proof Explorer


Theorem evlspw

Description: Polynomial evaluation for subrings maps the exponentiation of a polynomial to the exponentiation of the evaluated polynomial. (Contributed by SN, 29-Feb-2024)

Ref Expression
Hypotheses evlspw.q Q=IevalSubSR
evlspw.w W=ImPolyU
evlspw.g G=mulGrpW
evlspw.e ×˙=G
evlspw.u U=S𝑠R
evlspw.p P=S𝑠KI
evlspw.h H=mulGrpP
evlspw.k K=BaseS
evlspw.b B=BaseW
evlspw.i φIV
evlspw.s φSCRing
evlspw.r φRSubRingS
evlspw.n φN0
evlspw.x φXB
Assertion evlspw φQN×˙X=NHQX

Proof

Step Hyp Ref Expression
1 evlspw.q Q=IevalSubSR
2 evlspw.w W=ImPolyU
3 evlspw.g G=mulGrpW
4 evlspw.e ×˙=G
5 evlspw.u U=S𝑠R
6 evlspw.p P=S𝑠KI
7 evlspw.h H=mulGrpP
8 evlspw.k K=BaseS
9 evlspw.b B=BaseW
10 evlspw.i φIV
11 evlspw.s φSCRing
12 evlspw.r φRSubRingS
13 evlspw.n φN0
14 evlspw.x φXB
15 1 2 5 6 8 evlsrhm IVSCRingRSubRingSQWRingHomP
16 10 11 12 15 syl3anc φQWRingHomP
17 3 7 rhmmhm QWRingHomPQGMndHomH
18 16 17 syl φQGMndHomH
19 3 9 mgpbas B=BaseG
20 eqid H=H
21 19 4 20 mhmmulg QGMndHomHN0XBQN×˙X=NHQX
22 18 13 14 21 syl3anc φQN×˙X=NHQX