Metamath Proof Explorer


Theorem exinst01

Description: Existential Instantiation. Virtual Deduction rule corresponding to a special case of the Natural Deduction Sequent Calculus rule called Rule C in Margaris p. 79 and E E. in Table 1 on page 4 of the paper "Extracting information from intermediate T-systems" (2000) presented at IMLA99 by Mauro Ferrari, Camillo Fiorentini, and Pierangelo Miglioli. (Contributed by Alan Sare, 21-Apr-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses exinst01.1
|- E. x ps
exinst01.2
|- (. ph ,. ps ->. ch ).
exinst01.3
|- ( ph -> A. x ph )
exinst01.4
|- ( ch -> A. x ch )
Assertion exinst01
|- (. ph ->. ch ).

Proof

Step Hyp Ref Expression
1 exinst01.1
 |-  E. x ps
2 exinst01.2
 |-  (. ph ,. ps ->. ch ).
3 exinst01.3
 |-  ( ph -> A. x ph )
4 exinst01.4
 |-  ( ch -> A. x ch )
5 2 dfvd2i
 |-  ( ph -> ( ps -> ch ) )
6 1 5 3 4 eexinst01
 |-  ( ph -> ch )
7 6 dfvd1ir
 |-  (. ph ->. ch ).