Metamath Proof Explorer


Theorem exinst01

Description: Existential Instantiation. Virtual Deduction rule corresponding to a special case of the Natural Deduction Sequent Calculus rule called Rule C in Margaris p. 79 and E E. in Table 1 on page 4 of the paper "Extracting information from intermediate T-systems" (2000) presented at IMLA99 by Mauro Ferrari, Camillo Fiorentini, and Pierangelo Miglioli. (Contributed by Alan Sare, 21-Apr-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses exinst01.1 𝑥 𝜓
exinst01.2 (    𝜑    ,    𝜓    ▶    𝜒    )
exinst01.3 ( 𝜑 → ∀ 𝑥 𝜑 )
exinst01.4 ( 𝜒 → ∀ 𝑥 𝜒 )
Assertion exinst01 (    𝜑    ▶    𝜒    )

Proof

Step Hyp Ref Expression
1 exinst01.1 𝑥 𝜓
2 exinst01.2 (    𝜑    ,    𝜓    ▶    𝜒    )
3 exinst01.3 ( 𝜑 → ∀ 𝑥 𝜑 )
4 exinst01.4 ( 𝜒 → ∀ 𝑥 𝜒 )
5 2 dfvd2i ( 𝜑 → ( 𝜓𝜒 ) )
6 1 5 3 4 eexinst01 ( 𝜑𝜒 )
7 6 dfvd1ir (    𝜑    ▶    𝜒    )