Metamath Proof Explorer


Theorem exp5d

Description: An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009)

Ref Expression
Hypothesis exp5d.1
|- ( ( ( ph /\ ps ) /\ ch ) -> ( ( th /\ ta ) -> et ) )
Assertion exp5d
|- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) )

Proof

Step Hyp Ref Expression
1 exp5d.1
 |-  ( ( ( ph /\ ps ) /\ ch ) -> ( ( th /\ ta ) -> et ) )
2 1 expd
 |-  ( ( ( ph /\ ps ) /\ ch ) -> ( th -> ( ta -> et ) ) )
3 2 exp31
 |-  ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) )