Metamath Proof Explorer


Theorem exp5g

Description: An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009)

Ref Expression
Hypothesis exp5g.1
|- ( ( ph /\ ps ) -> ( ( ( ch /\ th ) /\ ta ) -> et ) )
Assertion exp5g
|- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) )

Proof

Step Hyp Ref Expression
1 exp5g.1
 |-  ( ( ph /\ ps ) -> ( ( ( ch /\ th ) /\ ta ) -> et ) )
2 1 exp4c
 |-  ( ( ph /\ ps ) -> ( ch -> ( th -> ( ta -> et ) ) ) )
3 2 ex
 |-  ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) )