Metamath Proof Explorer


Theorem exp5g

Description: An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009)

Ref Expression
Hypothesis exp5g.1 ( ( 𝜑𝜓 ) → ( ( ( 𝜒𝜃 ) ∧ 𝜏 ) → 𝜂 ) )
Assertion exp5g ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜃 → ( 𝜏𝜂 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 exp5g.1 ( ( 𝜑𝜓 ) → ( ( ( 𝜒𝜃 ) ∧ 𝜏 ) → 𝜂 ) )
2 1 exp4c ( ( 𝜑𝜓 ) → ( 𝜒 → ( 𝜃 → ( 𝜏𝜂 ) ) ) )
3 2 ex ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜃 → ( 𝜏𝜂 ) ) ) ) )