| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
| 2 |
|
expval |
|- ( ( A e. CC /\ N e. ZZ ) -> ( A ^ N ) = if ( N = 0 , 1 , if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) ) ) |
| 3 |
1 2
|
sylan2 |
|- ( ( A e. CC /\ N e. NN ) -> ( A ^ N ) = if ( N = 0 , 1 , if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) ) ) |
| 4 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
| 5 |
4
|
neneqd |
|- ( N e. NN -> -. N = 0 ) |
| 6 |
5
|
iffalsed |
|- ( N e. NN -> if ( N = 0 , 1 , if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) ) = if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) ) |
| 7 |
|
nngt0 |
|- ( N e. NN -> 0 < N ) |
| 8 |
7
|
iftrued |
|- ( N e. NN -> if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) |
| 9 |
6 8
|
eqtrd |
|- ( N e. NN -> if ( N = 0 , 1 , if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) |
| 10 |
9
|
adantl |
|- ( ( A e. CC /\ N e. NN ) -> if ( N = 0 , 1 , if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) |
| 11 |
3 10
|
eqtrd |
|- ( ( A e. CC /\ N e. NN ) -> ( A ^ N ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) |