Metamath Proof Explorer


Theorem expp1d

Description: Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of Gleason p. 134. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1
|- ( ph -> A e. CC )
expcld.2
|- ( ph -> N e. NN0 )
Assertion expp1d
|- ( ph -> ( A ^ ( N + 1 ) ) = ( ( A ^ N ) x. A ) )

Proof

Step Hyp Ref Expression
1 expcld.1
 |-  ( ph -> A e. CC )
2 expcld.2
 |-  ( ph -> N e. NN0 )
3 expp1
 |-  ( ( A e. CC /\ N e. NN0 ) -> ( A ^ ( N + 1 ) ) = ( ( A ^ N ) x. A ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( A ^ ( N + 1 ) ) = ( ( A ^ N ) x. A ) )