Metamath Proof Explorer


Theorem exrecfn

Description: Theorem about the existence of infinite recursive sets. y should usually be free in B . (Contributed by ML, 30-Mar-2022)

Ref Expression
Assertion exrecfn
|- ( ( A e. V /\ A. y B e. W ) -> E. x ( A C_ x /\ A. y e. x B e. x ) )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( z e. _V |-> ( z u. ran ( y e. z |-> B ) ) ) = ( z e. _V |-> ( z u. ran ( y e. z |-> B ) ) )
2 1 exrecfnlem
 |-  ( ( A e. V /\ A. y B e. W ) -> E. x ( A C_ x /\ A. y e. x B e. x ) )