Description: Theorem about the existence of infinite recursive sets. y should usually be free in B . (Contributed by ML, 30-Mar-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | exrecfn | |- ( ( A e. V /\ A. y B e. W ) -> E. x ( A C_ x /\ A. y e. x B e. x ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( z e. _V |-> ( z u. ran ( y e. z |-> B ) ) ) = ( z e. _V |-> ( z u. ran ( y e. z |-> B ) ) ) |
|
2 | 1 | exrecfnlem | |- ( ( A e. V /\ A. y B e. W ) -> E. x ( A C_ x /\ A. y e. x B e. x ) ) |