Description: For any base set, a set which contains the powerset of all of its own elements exists. (Contributed by ML, 30-Mar-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | exrecfnpw | |- ( A e. V -> E. x ( A C_ x /\ A. y e. x ~P y e. x ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vpwex | |- ~P y e. _V |
|
2 | 1 | ax-gen | |- A. y ~P y e. _V |
3 | exrecfn | |- ( ( A e. V /\ A. y ~P y e. _V ) -> E. x ( A C_ x /\ A. y e. x ~P y e. x ) ) |
|
4 | 2 3 | mpan2 | |- ( A e. V -> E. x ( A C_ x /\ A. y e. x ~P y e. x ) ) |