| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( -. _om e. _V /\ .< Or A ) -> -. _om e. _V ) |
| 2 |
|
soss |
|- ( x C_ A -> ( .< Or A -> .< Or x ) ) |
| 3 |
2
|
com12 |
|- ( .< Or A -> ( x C_ A -> .< Or x ) ) |
| 4 |
3
|
adantl |
|- ( ( -. _om e. _V /\ .< Or A ) -> ( x C_ A -> .< Or x ) ) |
| 5 |
|
vex |
|- x e. _V |
| 6 |
|
fineqv |
|- ( -. _om e. _V <-> Fin = _V ) |
| 7 |
6
|
biimpi |
|- ( -. _om e. _V -> Fin = _V ) |
| 8 |
5 7
|
eleqtrrid |
|- ( -. _om e. _V -> x e. Fin ) |
| 9 |
|
wofi |
|- ( ( .< Or x /\ x e. Fin ) -> .< We x ) |
| 10 |
9
|
ancoms |
|- ( ( x e. Fin /\ .< Or x ) -> .< We x ) |
| 11 |
8 10
|
sylan |
|- ( ( -. _om e. _V /\ .< Or x ) -> .< We x ) |
| 12 |
1 4 11
|
syl6an |
|- ( ( -. _om e. _V /\ .< Or A ) -> ( x C_ A -> .< We x ) ) |
| 13 |
|
ssid |
|- x C_ x |
| 14 |
|
wereu |
|- ( ( .< We x /\ ( x e. _V /\ x C_ x /\ x =/= (/) ) ) -> E! y e. x A. z e. x -. z .< y ) |
| 15 |
|
reurex |
|- ( E! y e. x A. z e. x -. z .< y -> E. y e. x A. z e. x -. z .< y ) |
| 16 |
14 15
|
syl |
|- ( ( .< We x /\ ( x e. _V /\ x C_ x /\ x =/= (/) ) ) -> E. y e. x A. z e. x -. z .< y ) |
| 17 |
5 16
|
mp3anr1 |
|- ( ( .< We x /\ ( x C_ x /\ x =/= (/) ) ) -> E. y e. x A. z e. x -. z .< y ) |
| 18 |
13 17
|
mpanr1 |
|- ( ( .< We x /\ x =/= (/) ) -> E. y e. x A. z e. x -. z .< y ) |
| 19 |
18
|
ex |
|- ( .< We x -> ( x =/= (/) -> E. y e. x A. z e. x -. z .< y ) ) |
| 20 |
12 19
|
syl6 |
|- ( ( -. _om e. _V /\ .< Or A ) -> ( x C_ A -> ( x =/= (/) -> E. y e. x A. z e. x -. z .< y ) ) ) |
| 21 |
20
|
impd |
|- ( ( -. _om e. _V /\ .< Or A ) -> ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z .< y ) ) |
| 22 |
21
|
alrimiv |
|- ( ( -. _om e. _V /\ .< Or A ) -> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z .< y ) ) |
| 23 |
|
df-fr |
|- ( .< Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z .< y ) ) |
| 24 |
22 23
|
sylibr |
|- ( ( -. _om e. _V /\ .< Or A ) -> .< Fr A ) |
| 25 |
|
simpr |
|- ( ( -. _om e. _V /\ .< Or A ) -> .< Or A ) |
| 26 |
|
df-we |
|- ( .< We A <-> ( .< Fr A /\ .< Or A ) ) |
| 27 |
24 25 26
|
sylanbrc |
|- ( ( -. _om e. _V /\ .< Or A ) -> .< We A ) |
| 28 |
27
|
ex |
|- ( -. _om e. _V -> ( .< Or A -> .< We A ) ) |