Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( -. _om e. _V /\ .< Or A ) -> -. _om e. _V ) |
2 |
|
soss |
|- ( x C_ A -> ( .< Or A -> .< Or x ) ) |
3 |
2
|
com12 |
|- ( .< Or A -> ( x C_ A -> .< Or x ) ) |
4 |
3
|
adantl |
|- ( ( -. _om e. _V /\ .< Or A ) -> ( x C_ A -> .< Or x ) ) |
5 |
|
vex |
|- x e. _V |
6 |
|
fineqv |
|- ( -. _om e. _V <-> Fin = _V ) |
7 |
6
|
biimpi |
|- ( -. _om e. _V -> Fin = _V ) |
8 |
5 7
|
eleqtrrid |
|- ( -. _om e. _V -> x e. Fin ) |
9 |
|
wofi |
|- ( ( .< Or x /\ x e. Fin ) -> .< We x ) |
10 |
9
|
ancoms |
|- ( ( x e. Fin /\ .< Or x ) -> .< We x ) |
11 |
8 10
|
sylan |
|- ( ( -. _om e. _V /\ .< Or x ) -> .< We x ) |
12 |
1 4 11
|
syl6an |
|- ( ( -. _om e. _V /\ .< Or A ) -> ( x C_ A -> .< We x ) ) |
13 |
|
ssid |
|- x C_ x |
14 |
|
wereu |
|- ( ( .< We x /\ ( x e. _V /\ x C_ x /\ x =/= (/) ) ) -> E! y e. x A. z e. x -. z .< y ) |
15 |
|
reurex |
|- ( E! y e. x A. z e. x -. z .< y -> E. y e. x A. z e. x -. z .< y ) |
16 |
14 15
|
syl |
|- ( ( .< We x /\ ( x e. _V /\ x C_ x /\ x =/= (/) ) ) -> E. y e. x A. z e. x -. z .< y ) |
17 |
5 16
|
mp3anr1 |
|- ( ( .< We x /\ ( x C_ x /\ x =/= (/) ) ) -> E. y e. x A. z e. x -. z .< y ) |
18 |
13 17
|
mpanr1 |
|- ( ( .< We x /\ x =/= (/) ) -> E. y e. x A. z e. x -. z .< y ) |
19 |
18
|
ex |
|- ( .< We x -> ( x =/= (/) -> E. y e. x A. z e. x -. z .< y ) ) |
20 |
12 19
|
syl6 |
|- ( ( -. _om e. _V /\ .< Or A ) -> ( x C_ A -> ( x =/= (/) -> E. y e. x A. z e. x -. z .< y ) ) ) |
21 |
20
|
impd |
|- ( ( -. _om e. _V /\ .< Or A ) -> ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z .< y ) ) |
22 |
21
|
alrimiv |
|- ( ( -. _om e. _V /\ .< Or A ) -> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z .< y ) ) |
23 |
|
df-fr |
|- ( .< Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z .< y ) ) |
24 |
22 23
|
sylibr |
|- ( ( -. _om e. _V /\ .< Or A ) -> .< Fr A ) |
25 |
|
simpr |
|- ( ( -. _om e. _V /\ .< Or A ) -> .< Or A ) |
26 |
|
df-we |
|- ( .< We A <-> ( .< Fr A /\ .< Or A ) ) |
27 |
24 25 26
|
sylanbrc |
|- ( ( -. _om e. _V /\ .< Or A ) -> .< We A ) |
28 |
27
|
ex |
|- ( -. _om e. _V -> ( .< Or A -> .< We A ) ) |