Metamath Proof Explorer


Theorem wofi

Description: A total order on a finite set is a well-order. (Contributed by Jeff Madsen, 18-Jun-2010) (Proof shortened by Mario Carneiro, 29-Jan-2014)

Ref Expression
Assertion wofi
|- ( ( R Or A /\ A e. Fin ) -> R We A )

Proof

Step Hyp Ref Expression
1 sopo
 |-  ( R Or A -> R Po A )
2 frfi
 |-  ( ( R Po A /\ A e. Fin ) -> R Fr A )
3 1 2 sylan
 |-  ( ( R Or A /\ A e. Fin ) -> R Fr A )
4 simpl
 |-  ( ( R Or A /\ A e. Fin ) -> R Or A )
5 df-we
 |-  ( R We A <-> ( R Fr A /\ R Or A ) )
6 3 4 5 sylanbrc
 |-  ( ( R Or A /\ A e. Fin ) -> R We A )