Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( ¬ ω ∈ V ∧ < Or 𝐴 ) → ¬ ω ∈ V ) |
2 |
|
soss |
⊢ ( 𝑥 ⊆ 𝐴 → ( < Or 𝐴 → < Or 𝑥 ) ) |
3 |
2
|
com12 |
⊢ ( < Or 𝐴 → ( 𝑥 ⊆ 𝐴 → < Or 𝑥 ) ) |
4 |
3
|
adantl |
⊢ ( ( ¬ ω ∈ V ∧ < Or 𝐴 ) → ( 𝑥 ⊆ 𝐴 → < Or 𝑥 ) ) |
5 |
|
vex |
⊢ 𝑥 ∈ V |
6 |
|
fineqv |
⊢ ( ¬ ω ∈ V ↔ Fin = V ) |
7 |
6
|
biimpi |
⊢ ( ¬ ω ∈ V → Fin = V ) |
8 |
5 7
|
eleqtrrid |
⊢ ( ¬ ω ∈ V → 𝑥 ∈ Fin ) |
9 |
|
wofi |
⊢ ( ( < Or 𝑥 ∧ 𝑥 ∈ Fin ) → < We 𝑥 ) |
10 |
9
|
ancoms |
⊢ ( ( 𝑥 ∈ Fin ∧ < Or 𝑥 ) → < We 𝑥 ) |
11 |
8 10
|
sylan |
⊢ ( ( ¬ ω ∈ V ∧ < Or 𝑥 ) → < We 𝑥 ) |
12 |
1 4 11
|
syl6an |
⊢ ( ( ¬ ω ∈ V ∧ < Or 𝐴 ) → ( 𝑥 ⊆ 𝐴 → < We 𝑥 ) ) |
13 |
|
ssid |
⊢ 𝑥 ⊆ 𝑥 |
14 |
|
wereu |
⊢ ( ( < We 𝑥 ∧ ( 𝑥 ∈ V ∧ 𝑥 ⊆ 𝑥 ∧ 𝑥 ≠ ∅ ) ) → ∃! 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦 ) |
15 |
|
reurex |
⊢ ( ∃! 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦 → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦 ) |
16 |
14 15
|
syl |
⊢ ( ( < We 𝑥 ∧ ( 𝑥 ∈ V ∧ 𝑥 ⊆ 𝑥 ∧ 𝑥 ≠ ∅ ) ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦 ) |
17 |
5 16
|
mp3anr1 |
⊢ ( ( < We 𝑥 ∧ ( 𝑥 ⊆ 𝑥 ∧ 𝑥 ≠ ∅ ) ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦 ) |
18 |
13 17
|
mpanr1 |
⊢ ( ( < We 𝑥 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦 ) |
19 |
18
|
ex |
⊢ ( < We 𝑥 → ( 𝑥 ≠ ∅ → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦 ) ) |
20 |
12 19
|
syl6 |
⊢ ( ( ¬ ω ∈ V ∧ < Or 𝐴 ) → ( 𝑥 ⊆ 𝐴 → ( 𝑥 ≠ ∅ → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦 ) ) ) |
21 |
20
|
impd |
⊢ ( ( ¬ ω ∈ V ∧ < Or 𝐴 ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦 ) ) |
22 |
21
|
alrimiv |
⊢ ( ( ¬ ω ∈ V ∧ < Or 𝐴 ) → ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦 ) ) |
23 |
|
df-fr |
⊢ ( < Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦 ) ) |
24 |
22 23
|
sylibr |
⊢ ( ( ¬ ω ∈ V ∧ < Or 𝐴 ) → < Fr 𝐴 ) |
25 |
|
simpr |
⊢ ( ( ¬ ω ∈ V ∧ < Or 𝐴 ) → < Or 𝐴 ) |
26 |
|
df-we |
⊢ ( < We 𝐴 ↔ ( < Fr 𝐴 ∧ < Or 𝐴 ) ) |
27 |
24 25 26
|
sylanbrc |
⊢ ( ( ¬ ω ∈ V ∧ < Or 𝐴 ) → < We 𝐴 ) |
28 |
27
|
ex |
⊢ ( ¬ ω ∈ V → ( < Or 𝐴 → < We 𝐴 ) ) |