Metamath Proof Explorer


Theorem finorwe

Description: If the Axiom of Infinity is denied, every total order is a well-order. The notion of a well-order cannot be usefully expressed without the Axiom of Infinity due to the inability to quantify over proper classes. (Contributed by ML, 5-Oct-2023)

Ref Expression
Assertion finorwe ( ¬ ω ∈ V → ( < Or 𝐴< We 𝐴 ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( ¬ ω ∈ V ∧ < Or 𝐴 ) → ¬ ω ∈ V )
2 soss ( 𝑥𝐴 → ( < Or 𝐴< Or 𝑥 ) )
3 2 com12 ( < Or 𝐴 → ( 𝑥𝐴< Or 𝑥 ) )
4 3 adantl ( ( ¬ ω ∈ V ∧ < Or 𝐴 ) → ( 𝑥𝐴< Or 𝑥 ) )
5 vex 𝑥 ∈ V
6 fineqv ( ¬ ω ∈ V ↔ Fin = V )
7 6 biimpi ( ¬ ω ∈ V → Fin = V )
8 5 7 eleqtrrid ( ¬ ω ∈ V → 𝑥 ∈ Fin )
9 wofi ( ( < Or 𝑥𝑥 ∈ Fin ) → < We 𝑥 )
10 9 ancoms ( ( 𝑥 ∈ Fin ∧ < Or 𝑥 ) → < We 𝑥 )
11 8 10 sylan ( ( ¬ ω ∈ V ∧ < Or 𝑥 ) → < We 𝑥 )
12 1 4 11 syl6an ( ( ¬ ω ∈ V ∧ < Or 𝐴 ) → ( 𝑥𝐴< We 𝑥 ) )
13 ssid 𝑥𝑥
14 wereu ( ( < We 𝑥 ∧ ( 𝑥 ∈ V ∧ 𝑥𝑥𝑥 ≠ ∅ ) ) → ∃! 𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦 )
15 reurex ( ∃! 𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦 → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦 )
16 14 15 syl ( ( < We 𝑥 ∧ ( 𝑥 ∈ V ∧ 𝑥𝑥𝑥 ≠ ∅ ) ) → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦 )
17 5 16 mp3anr1 ( ( < We 𝑥 ∧ ( 𝑥𝑥𝑥 ≠ ∅ ) ) → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦 )
18 13 17 mpanr1 ( ( < We 𝑥𝑥 ≠ ∅ ) → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦 )
19 18 ex ( < We 𝑥 → ( 𝑥 ≠ ∅ → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦 ) )
20 12 19 syl6 ( ( ¬ ω ∈ V ∧ < Or 𝐴 ) → ( 𝑥𝐴 → ( 𝑥 ≠ ∅ → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦 ) ) )
21 20 impd ( ( ¬ ω ∈ V ∧ < Or 𝐴 ) → ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦 ) )
22 21 alrimiv ( ( ¬ ω ∈ V ∧ < Or 𝐴 ) → ∀ 𝑥 ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦 ) )
23 df-fr ( < Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦 ) )
24 22 23 sylibr ( ( ¬ ω ∈ V ∧ < Or 𝐴 ) → < Fr 𝐴 )
25 simpr ( ( ¬ ω ∈ V ∧ < Or 𝐴 ) → < Or 𝐴 )
26 df-we ( < We 𝐴 ↔ ( < Fr 𝐴< Or 𝐴 ) )
27 24 25 26 sylanbrc ( ( ¬ ω ∈ V ∧ < Or 𝐴 ) → < We 𝐴 )
28 27 ex ( ¬ ω ∈ V → ( < Or 𝐴< We 𝐴 ) )