Database  
				ZF (ZERMELO-FRAENKEL) SET THEORY  
				ZF Set Theory - add the Axiom of Union  
				Finite sets (cont.)  
				fineqv  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   If the Axiom of Infinity is denied, then all sets are finite (which
     implies the Axiom of Choice).  (Contributed by Mario Carneiro , 20-Jan-2013)   (Revised by Mario Carneiro , 3-Jan-2015) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
				
					 
					Assertion 
					fineqv  
					⊢   ( ¬  ω  ∈  V  ↔  Fin  =  V )  
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							ssv  
							⊢  Fin  ⊆  V  
						 
						
							2  
							
								1 
							 
							a1i  
							⊢  ( ¬  ω  ∈  V  →  Fin  ⊆  V )  
						 
						
							3  
							
								
							 
							vex  
							⊢  𝑎   ∈  V  
						 
						
							4  
							
								
							 
							fineqvlem  
							⊢  ( ( 𝑎   ∈  V  ∧  ¬  𝑎   ∈  Fin )  →  ω  ≼  𝒫  𝒫  𝑎  )  
						 
						
							5  
							
								3  4 
							 
							mpan  
							⊢  ( ¬  𝑎   ∈  Fin  →  ω  ≼  𝒫  𝒫  𝑎  )  
						 
						
							6  
							
								
							 
							reldom  
							⊢  Rel   ≼   
						 
						
							7  
							
								6 
							 
							brrelex1i  
							⊢  ( ω  ≼  𝒫  𝒫  𝑎   →  ω  ∈  V )  
						 
						
							8  
							
								5  7 
							 
							syl  
							⊢  ( ¬  𝑎   ∈  Fin  →  ω  ∈  V )  
						 
						
							9  
							
								8 
							 
							con1i  
							⊢  ( ¬  ω  ∈  V  →  𝑎   ∈  Fin )  
						 
						
							10  
							
								9 
							 
							a1d  
							⊢  ( ¬  ω  ∈  V  →  ( 𝑎   ∈  V  →  𝑎   ∈  Fin ) )  
						 
						
							11  
							
								10 
							 
							ssrdv  
							⊢  ( ¬  ω  ∈  V  →  V  ⊆  Fin )  
						 
						
							12  
							
								2  11 
							 
							eqssd  
							⊢  ( ¬  ω  ∈  V  →  Fin  =  V )  
						 
						
							13  
							
								
							 
							ominf  
							⊢  ¬  ω  ∈  Fin  
						 
						
							14  
							
								
							 
							eleq2  
							⊢  ( Fin  =  V  →  ( ω  ∈  Fin  ↔  ω  ∈  V ) )  
						 
						
							15  
							
								13  14 
							 
							mtbii  
							⊢  ( Fin  =  V  →  ¬  ω  ∈  V )  
						 
						
							16  
							
								12  15 
							 
							impbii  
							⊢  ( ¬  ω  ∈  V  ↔  Fin  =  V )