Metamath Proof Explorer


Theorem finorwe

Description: If the Axiom of Infinity is denied, every total order is a well-order. The notion of a well-order cannot be usefully expressed without the Axiom of Infinity due to the inability to quantify over proper classes. (Contributed by ML, 5-Oct-2023)

Ref Expression
Assertion finorwe ¬ ω V < ˙ Or A < ˙ We A

Proof

Step Hyp Ref Expression
1 simpl ¬ ω V < ˙ Or A ¬ ω V
2 soss x A < ˙ Or A < ˙ Or x
3 2 com12 < ˙ Or A x A < ˙ Or x
4 3 adantl ¬ ω V < ˙ Or A x A < ˙ Or x
5 vex x V
6 fineqv ¬ ω V Fin = V
7 6 biimpi ¬ ω V Fin = V
8 5 7 eleqtrrid ¬ ω V x Fin
9 wofi < ˙ Or x x Fin < ˙ We x
10 9 ancoms x Fin < ˙ Or x < ˙ We x
11 8 10 sylan ¬ ω V < ˙ Or x < ˙ We x
12 1 4 11 syl6an ¬ ω V < ˙ Or A x A < ˙ We x
13 ssid x x
14 wereu < ˙ We x x V x x x ∃! y x z x ¬ z < ˙ y
15 reurex ∃! y x z x ¬ z < ˙ y y x z x ¬ z < ˙ y
16 14 15 syl < ˙ We x x V x x x y x z x ¬ z < ˙ y
17 5 16 mp3anr1 < ˙ We x x x x y x z x ¬ z < ˙ y
18 13 17 mpanr1 < ˙ We x x y x z x ¬ z < ˙ y
19 18 ex < ˙ We x x y x z x ¬ z < ˙ y
20 12 19 syl6 ¬ ω V < ˙ Or A x A x y x z x ¬ z < ˙ y
21 20 impd ¬ ω V < ˙ Or A x A x y x z x ¬ z < ˙ y
22 21 alrimiv ¬ ω V < ˙ Or A x x A x y x z x ¬ z < ˙ y
23 df-fr < ˙ Fr A x x A x y x z x ¬ z < ˙ y
24 22 23 sylibr ¬ ω V < ˙ Or A < ˙ Fr A
25 simpr ¬ ω V < ˙ Or A < ˙ Or A
26 df-we < ˙ We A < ˙ Fr A < ˙ Or A
27 24 25 26 sylanbrc ¬ ω V < ˙ Or A < ˙ We A
28 27 ex ¬ ω V < ˙ Or A < ˙ We A