Description: If the Axiom of Infinity is denied, every total order is a well-order. The notion of a well-order cannot be usefully expressed without the Axiom of Infinity due to the inability to quantify over proper classes. (Contributed by ML, 5-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | finorwe | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |
|
2 | soss | |
|
3 | 2 | com12 | |
4 | 3 | adantl | |
5 | vex | |
|
6 | fineqv | |
|
7 | 6 | biimpi | |
8 | 5 7 | eleqtrrid | |
9 | wofi | |
|
10 | 9 | ancoms | |
11 | 8 10 | sylan | |
12 | 1 4 11 | syl6an | |
13 | ssid | |
|
14 | wereu | |
|
15 | reurex | |
|
16 | 14 15 | syl | |
17 | 5 16 | mp3anr1 | |
18 | 13 17 | mpanr1 | |
19 | 18 | ex | |
20 | 12 19 | syl6 | |
21 | 20 | impd | |
22 | 21 | alrimiv | |
23 | df-fr | |
|
24 | 22 23 | sylibr | |
25 | simpr | |
|
26 | df-we | |
|
27 | 24 25 26 | sylanbrc | |
28 | 27 | ex | |