Metamath Proof Explorer


Theorem finorwe

Description: If the Axiom of Infinity is denied, every total order is a well-order. The notion of a well-order cannot be usefully expressed without the Axiom of Infinity due to the inability to quantify over proper classes. (Contributed by ML, 5-Oct-2023)

Ref Expression
Assertion finorwe ¬ωV<˙OrA<˙WeA

Proof

Step Hyp Ref Expression
1 simpl ¬ωV<˙OrA¬ωV
2 soss xA<˙OrA<˙Orx
3 2 com12 <˙OrAxA<˙Orx
4 3 adantl ¬ωV<˙OrAxA<˙Orx
5 vex xV
6 fineqv ¬ωVFin=V
7 6 biimpi ¬ωVFin=V
8 5 7 eleqtrrid ¬ωVxFin
9 wofi <˙OrxxFin<˙Wex
10 9 ancoms xFin<˙Orx<˙Wex
11 8 10 sylan ¬ωV<˙Orx<˙Wex
12 1 4 11 syl6an ¬ωV<˙OrAxA<˙Wex
13 ssid xx
14 wereu <˙WexxVxxx∃!yxzx¬z<˙y
15 reurex ∃!yxzx¬z<˙yyxzx¬z<˙y
16 14 15 syl <˙WexxVxxxyxzx¬z<˙y
17 5 16 mp3anr1 <˙Wexxxxyxzx¬z<˙y
18 13 17 mpanr1 <˙Wexxyxzx¬z<˙y
19 18 ex <˙Wexxyxzx¬z<˙y
20 12 19 syl6 ¬ωV<˙OrAxAxyxzx¬z<˙y
21 20 impd ¬ωV<˙OrAxAxyxzx¬z<˙y
22 21 alrimiv ¬ωV<˙OrAxxAxyxzx¬z<˙y
23 df-fr <˙FrAxxAxyxzx¬z<˙y
24 22 23 sylibr ¬ωV<˙OrA<˙FrA
25 simpr ¬ωV<˙OrA<˙OrA
26 df-we <˙WeA<˙FrA<˙OrA
27 24 25 26 sylanbrc ¬ωV<˙OrA<˙WeA
28 27 ex ¬ωV<˙OrA<˙WeA