Metamath Proof Explorer


Theorem exrecfnpw

Description: For any base set, a set which contains the powerset of all of its own elements exists. (Contributed by ML, 30-Mar-2022)

Ref Expression
Assertion exrecfnpw A V x A x y x 𝒫 y x

Proof

Step Hyp Ref Expression
1 vpwex 𝒫 y V
2 1 ax-gen y 𝒫 y V
3 exrecfn A V y 𝒫 y V x A x y x 𝒫 y x
4 2 3 mpan2 A V x A x y x 𝒫 y x