Metamath Proof Explorer


Theorem exsnrex

Description: There is a set being the element of a singleton if and only if there is an element of the singleton. (Contributed by Alexander van der Vekens, 1-Jan-2018)

Ref Expression
Assertion exsnrex
|- ( E. x M = { x } <-> E. x e. M M = { x } )

Proof

Step Hyp Ref Expression
1 vsnid
 |-  x e. { x }
2 eleq2
 |-  ( M = { x } -> ( x e. M <-> x e. { x } ) )
3 1 2 mpbiri
 |-  ( M = { x } -> x e. M )
4 3 pm4.71ri
 |-  ( M = { x } <-> ( x e. M /\ M = { x } ) )
5 4 exbii
 |-  ( E. x M = { x } <-> E. x ( x e. M /\ M = { x } ) )
6 df-rex
 |-  ( E. x e. M M = { x } <-> E. x ( x e. M /\ M = { x } ) )
7 5 6 bitr4i
 |-  ( E. x M = { x } <-> E. x e. M M = { x } )