| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fh1.1 |
|- A e. CH |
| 2 |
|
fh1.2 |
|- B e. CH |
| 3 |
|
fh1.3 |
|- C e. CH |
| 4 |
|
fh1.4 |
|- A C_H B |
| 5 |
|
fh1.5 |
|- A C_H C |
| 6 |
1
|
choccli |
|- ( _|_ ` A ) e. CH |
| 7 |
2
|
choccli |
|- ( _|_ ` B ) e. CH |
| 8 |
3
|
choccli |
|- ( _|_ ` C ) e. CH |
| 9 |
1 2 4
|
cmcm3ii |
|- ( _|_ ` A ) C_H B |
| 10 |
6 2 9
|
cmcm2ii |
|- ( _|_ ` A ) C_H ( _|_ ` B ) |
| 11 |
1 3 5
|
cmcm3ii |
|- ( _|_ ` A ) C_H C |
| 12 |
6 3 11
|
cmcm2ii |
|- ( _|_ ` A ) C_H ( _|_ ` C ) |
| 13 |
6 7 8 10 12
|
fh2i |
|- ( ( _|_ ` B ) i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) = ( ( ( _|_ ` B ) i^i ( _|_ ` A ) ) vH ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) |
| 14 |
1 3
|
chdmm1i |
|- ( _|_ ` ( A i^i C ) ) = ( ( _|_ ` A ) vH ( _|_ ` C ) ) |
| 15 |
14
|
ineq2i |
|- ( ( _|_ ` B ) i^i ( _|_ ` ( A i^i C ) ) ) = ( ( _|_ ` B ) i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) |
| 16 |
2 1
|
chdmj1i |
|- ( _|_ ` ( B vH A ) ) = ( ( _|_ ` B ) i^i ( _|_ ` A ) ) |
| 17 |
2 3
|
chdmj1i |
|- ( _|_ ` ( B vH C ) ) = ( ( _|_ ` B ) i^i ( _|_ ` C ) ) |
| 18 |
16 17
|
oveq12i |
|- ( ( _|_ ` ( B vH A ) ) vH ( _|_ ` ( B vH C ) ) ) = ( ( ( _|_ ` B ) i^i ( _|_ ` A ) ) vH ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) |
| 19 |
13 15 18
|
3eqtr4ri |
|- ( ( _|_ ` ( B vH A ) ) vH ( _|_ ` ( B vH C ) ) ) = ( ( _|_ ` B ) i^i ( _|_ ` ( A i^i C ) ) ) |
| 20 |
2 1
|
chjcli |
|- ( B vH A ) e. CH |
| 21 |
2 3
|
chjcli |
|- ( B vH C ) e. CH |
| 22 |
20 21
|
chdmm1i |
|- ( _|_ ` ( ( B vH A ) i^i ( B vH C ) ) ) = ( ( _|_ ` ( B vH A ) ) vH ( _|_ ` ( B vH C ) ) ) |
| 23 |
1 3
|
chincli |
|- ( A i^i C ) e. CH |
| 24 |
2 23
|
chdmj1i |
|- ( _|_ ` ( B vH ( A i^i C ) ) ) = ( ( _|_ ` B ) i^i ( _|_ ` ( A i^i C ) ) ) |
| 25 |
19 22 24
|
3eqtr4i |
|- ( _|_ ` ( ( B vH A ) i^i ( B vH C ) ) ) = ( _|_ ` ( B vH ( A i^i C ) ) ) |
| 26 |
2 23
|
chjcli |
|- ( B vH ( A i^i C ) ) e. CH |
| 27 |
20 21
|
chincli |
|- ( ( B vH A ) i^i ( B vH C ) ) e. CH |
| 28 |
26 27
|
chcon3i |
|- ( ( B vH ( A i^i C ) ) = ( ( B vH A ) i^i ( B vH C ) ) <-> ( _|_ ` ( ( B vH A ) i^i ( B vH C ) ) ) = ( _|_ ` ( B vH ( A i^i C ) ) ) ) |
| 29 |
25 28
|
mpbir |
|- ( B vH ( A i^i C ) ) = ( ( B vH A ) i^i ( B vH C ) ) |