Description: A filter has the same convergence and clustering properties as some net. (Contributed by Jeff Hankins, 12-Dec-2009) (Revised by Mario Carneiro, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | filnet | |- ( F e. ( Fil ` X ) -> E. d e. DirRel E. f ( f : dom d --> X /\ F = ( ( X FilMap f ) ` ran ( tail ` d ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- U_ n e. F ( { n } X. n ) = U_ n e. F ( { n } X. n ) |
|
| 2 | eqid | |- { <. x , y >. | ( ( x e. U_ n e. F ( { n } X. n ) /\ y e. U_ n e. F ( { n } X. n ) ) /\ ( 1st ` y ) C_ ( 1st ` x ) ) } = { <. x , y >. | ( ( x e. U_ n e. F ( { n } X. n ) /\ y e. U_ n e. F ( { n } X. n ) ) /\ ( 1st ` y ) C_ ( 1st ` x ) ) } |
|
| 3 | 1 2 | filnetlem4 | |- ( F e. ( Fil ` X ) -> E. d e. DirRel E. f ( f : dom d --> X /\ F = ( ( X FilMap f ) ` ran ( tail ` d ) ) ) ) |